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RESUMO

A proposta deste trabalho é avaliar diferentes algoritmos de aprendizado de maquina
para prever temperaturas criticas de transformacdes de fases. Calculos de termodina-
mica computacional utilizando o software Thermo-Calc foram usados para gerar um
banco de dados que representasse as composigdes quimicas de agos de engenharia.
A partir dele, foram elaborados modelos de regressao linear multivaridvel e uma rede
neural, cujas métricas e predicdes foram analisadas e comparadas entre si.

Palavras-chave: Ac¢o. Termodinamica. Temperaturas criticas. Aprendizado de ma-
quina. Regresséao. Redes neurais.




ABSTRACT

The purpose of this work is to evaluate distinct machine learning algorithms to predict
critical phase transformations temperatures. Computational thermodynamics calcula-
tions using Thermo-Calc software were used to generate a database representing the
chemical compositions of engineering steels. This database was used to elaborate
multivariate linear regression models and a neural network, whose metrics and predic-
tions were analyzed and compared.

Keywords: Steel. Thermodynamics. Critical temperatures. Machine learning. Re-

gression. Neural Networks
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1 INTRODUCAO

Acos tém diversas aplicagdes industriais e sua versatilidade esta relacionada a
variedade de propriedades que ele pode assumir. Além de sua composigdo quimica,
processos de tratamento térmico controlam essas propriedades, que, por sua vez, es-
tao relacionadas as temperaturas em que ocorrem as transformagdes de fases. Essas
temperaturas também sao chamadas de temperaturas criticas e, ao longo do tempo,
foram desenvolvidos diversos métodos para determina-las. Pode-se utilizar métodos
experimentais, como a dilatometria, ou softwares de céalculos termodinamicos, como o
Thermo-Calc®, ou ainda equagbes empiricas.

Novos modelos estdo em desenvolvimento e entre eles estdo os algoritmos de
aprendizado de maquina, cujo desempenho aumenta quanto maior for sua experién-
cia em realizar alguma atividade. Apesar de os métodos atuais serem razoavelmente
precisos e eficientes, eles demandam certo custo de equipamento, software ou ca-
pacitagdo humana. Assim, uma ferramenta de célculo de facil acesso e utilizagao

permitiria melhor compreensao das temperaturas criticas para o tratamento térmico
de agos.
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2 OBJETIVOS

O presente trabalho tem como objetivo a determinagdo das temperaturas criticas
de transformagéo de fases em agos de engenharia através de algoritmos de apren-
dizado de magquina, utilizando a base de dados do software Thermo-Calc®, a fim de
futuramente disponibilizar uma ferramenta de calculo simples de se utilizar e aberta a
comunidade cientifica. Além disso, o trabalho compara a acurécia dos métodos para
a predicio das temperaturas desejadas.
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3 REVISAO BIBLIOGRAFICA

3.1 OS COMPONENTES DO AGO

Agos podem ser vistos como uma liga ferrosa com adigdes de carbono e outros
elementos de liga, dentre os quais destacam-se o manganés, silicio, cromo, niquel,
entre outros (DOSSETT; BOYER, 2006). Sao conhecidas inimeras combinagées de
ligas de ferro e carbono que fornecem diferentes combinagdes de propriedades me-
cénicas, podendo apresentar altissimas dureza e resisténcia (e.g., as novas geragdes
de agos avangados de alta resisténcia), ou serem maleéveis, como em agos de baixa
liga. Tal mudanga de propriedades estéa relacionada com as diferentes estruturas do
ferro (fases) e combinagdes de morfologias que o ago pode assumir.

O ferro puro em estado sélido tem duas formas alotrépicas, ou seja, diferentes
estruturas cristalinas que dependem da temperatura e pressdo. A baixas temperatu-
ras, o ferro assume a estrutura cubica de corpo centrado (CCC) e é denominado a-Fe,
ou ferrita. Acima de 910 °C, a disposigao atdmica do ferro muda de CCC para cibica
de faces centradas (CFC), também chamada de y-Fe, ou austenita. A estabilidade da
austenita permanece até 1400 °C, quando volta a assumir uma estrutura CCC. Esta
ferrita de alta temperatura é comumente chamada de §-Fe devido a diferente faixa
de temperatura de ocorréncia da fase o — Fe. Alguns autores também diferenciam a
fase B-Fe da fase o-Fe, ambas de estrutura CCC, pelo fato de que para temperaturas
superiores a 770 °C (temperatura de Curie) o o-Fe perde suas propriedades ferromag-
néticas e passa a ser paramagnético (TOTTEN, 2006).

A partir da combinagéo dessas possiveis estruturas do ferro com outros elemen-
tos formam-se as ligas. Como o ferro é a base do ago e tem estruturas cristalinas
limitadas, € a sua combinag&o com outros dtomos que resulta em diferentes proprie-
dades. O carbono possui baixa solubilidade na fase a (0,02% em massa a 738 °C),
mas € bastante soltvel na fase v, pois a estrutura CFC permite a alocagdo de uma
maior fragdo de atomos de carbono em seus intersticios.

A porgédo de uma liga com estrutura e propriedades homogéneas é denominada
fase. Em equilibrio termodinamico, as combinagdes entre o carbono e o ferro podem
resultar em ferrita, austenita ou grafita, cujas relagées com a temperatura e compo-
sicdo sdo mostradas no diagrama de equilibrio da Figura 1. Nessas condigdes, os
constituintes do sistema Fe-C a temperatura ambiente seriam ferrita o e grafita.

Entretanto, a condigao de equilibrio ndo é verificada para a maioria dos proces-
sos e, em vez de grafita, forma-se o carboneto de ferro Fe;C, também chamado de

e+ e —— i ——— Y ]
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Figura 1 - Diagrama de equilibrio ferro-carbono (MASSALSKI, 1996)

cementita. A cementita € uma fase metaestavel, mas sua formagéo é favorecida ci-
neticamente em relagéo a grafita devido as elevadas taxas de resfriamento aplicadas
ao ago durante seu processamento. Para essas condigdes, o diagrama de fase, que é
entdao chamado de diagrama de equilibrio metaestavel, é dado pela Figura 2.

Um ponto importante do diagrama mostrado na Figura 2 é o ponto eutetdide, no
qual coexistem em equilibrio as fases a, v e Fe3C. Para um sistema apenas ferro e
carbono, o teor de carbono correspondente a esta fase é aproximadamente 0,8% C em
massa. Ligas com teores de carbono inferiores a esta composigao s&o denominadas
hipoeutetbides e, ligas com teores de carbono superiores a do ponto eutetdide sao
chamadas de hipereutetdides (HONEYCOMBE, 1982).

3.2 O THERMO-CALC®

O Thermo-Calc® é um software vinculado a diversos bancos de dados, com o ob-
jetivo de tornar os calculos termodindmicos mais rapidos e eficientes, ajudando no pla-
nejamento e redugao de experimentos. Isso é possivel devido ao método CALPHAD,
que inicialmente era a abreviagcdo de “Calculation of Phase Diagrams” e depois foi
expandido para “Coupling of Phase Diagrams and Thermochemistry”. Este método
utiliza todas as informagdes experimentais e tedricas sobre um sistema, aplicando so-

e . T ——
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Figura 2 - Diagrama de fases metaestavel ferro-carbono (MASSALSKI, 1996)

bre elas um modelo matematico, cujos parametros sdo otimizados de acordo com a
minimizag&o da energia livre de Gibbs. Os modelos matematicos sdo desenvolvidos
considerando as propriedades quimicas e fisicas do sistema, como a cristalografia,
tipo de ligagao e propriedades magnéticas.

O software trabalha com médulos, que realizam célculos diferentes e mostram
os resultados de diversas formas, sendo o principal deles o System-Ultilities ou SYS.
Para este trabalho, foi utilizado o médulo POLY, que mediante dados de temperatura-
pressao-composicéo realiza caculos de diagramas de equilibrio e de fases, em parti-
cular os multicomponentes (Thermo-Calc Software AB, 2003).

3.3 TEMPERATURAS CRITICAS DE AGOS

Le Chatelier foi o primeiro a atribuir a letra “A” para as temperaturas criticas de
transformagéo, devido a palavra Arrét, que representa a parada na temperatura du-
rante a transformagéo de fase (SILVA; MEI, 2010). Para exemplificar essas tempe-
raturas criticas em agos, sdo mostrados a seguir graficos obtidos por simulagdes de
termodindmica computacional utilizando o software Thermo-Calc®, correspondentes
a uma liga Fe-1%Mn-C.

A Figura 3 corresponde & isopleta do carbono para o teor de 1% em massa de Mn.

e I S ——
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As linhas tracejadas na vertical representam trés ligas com teores de carbono também
fixos. A primeira linha vertical tracejada da Figura 3 representa um ago hipoeutetéide e
o grafico da fragdo molar das fases em fungdo da temperatura é apresentado na Figura
4a. Um ago com essa composi¢éo, mediante aquecimento, mantém as fases o e Fe,C
estaveis até a temperatura A1 ser atingida, na qual a fase o comega a se decompor em
Y. No gréfico da Figura 4a, essa temperatura pode ser notada pela primeira mudanga
de inclinagao da curva da austenita. O ago permanece no campo trifasico (a0 + v
+ Fe3C) até a temperatura A1’ ser atingida, quando toda a fase Fe;C é consumida.
Para temperaturas crescentes, a fase o se transforma em y até a temperatura A3 ser
atingida, na qual tem-se 100% de fase y.

850

825

800

775 A

750 A

Temperatura (°C)

725
A1

a+Fe3C+
700 A A1

a+ Fe3C

675 1

650 . r
0.0 0.2 0.4 0.6 0.8 1.0 1.2

C (% massa)

Figura 3 - Diagrama de fases Fe-C para ago 1% Mn, em massa

Um ago eutetéide, correspondente a segunda linha vertical da Figura 3 e ao gra-
fico da Figura 4b, segue o mesmo raciocinio. A diferenga é que ndo ha um campo
trifasico e, portanto, ndo ha mais uma temperatura A1’ definida.

Ja para um ago hipereutetdide, terceira linha vertical na Figura 3 e grafico da
Figura 4c, a diferenga é que o segundo campo bifasico é constituido por y e FesC, até
atingir o ponto em que toda a fase Fe;C se transforma em y. Algumas referéncias,
como Digges, Rosenberg e Geil (1960), fazem distingdo para a temperatura A3 de

-



18
0,1%C (hipoeutetaide) 0,727%C (eutetdide)

1.0 - At AT = 1.0 1 At A3
3 —— a (ferrita) 3 —— @ (ferrita)
5 y (austenita) 3 Y (austenita)
CE, —— Fes3C (cementita) g —— Fe3C (cementita)
'3' . '8
o [o]
o w

0.0 { % _ i

650 700 750 800 850 650 700 750 800 850
Temperatura (°C) Temperatura (°C)
(a) (b)

1%C (hipereutetoide)
AT AT w

1.0 1

[+)]
v
pud EIH
] Bl ——  a (ferrita)
s i Y (austenita)
E —— Fe3C (cementita)
i : i :
E HH
024 ik
A
i\
——
0.0 2. = 4
650 700 750 800 850

Temperatura (°C)

(c)

Figura 4 - Fracdo molar de fase versus Temperatura para ago 1%C 1% Mn, em massa

acos hipereutetéides, chamando-a de Acm, devido a diferenga de campos bifasicos.
No presente trabalho, ambas serdo chamadas de A3, por corresponderem & menor
temperatura em que a fragao de austenita é 100%.

Em resumo, pode-se dizer que a temperatura A1 corresponde & maxima tempe-
ratura em que a fragéo de austenita é zero, enquanto a A3 é a minima temperatura
cuja fragéo de austenita é 100% e A1’ é o limite superior do campo intercritico de trés

e ————e—— i ——————— b N R ——A—— R S
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fases (HONEYCOMBE, 1982).

E possivel ainda diferenciar a temperatura critica no resfriamento da de aqueci-
mento, utilizando respectivamente as letras “r’ e “e”. Sob aquecimento e resfriamento
lentos (ou seja, sob condigdes de equilibrio) elas devem ser iguais. Na pratica, as ta-
xas de resfriamento ou aquecimento aplicadas deslocam as temperaturas Ae1 de Ar1
e Ae3 de Ar3 do equilibrio, devido as cinéticas de formacao e dissolucio das fases. A
faixa de temperatura entre A1 e A3 é chamada de intervalo critico ou de transformagao
(DIGGES; ROSENBERG; GEIL, 1960).

3.4 TRATAMENTO TERMICO DE ACOS

A importancia da determinagéao das temperaturas criticas esta diretamente rela-
cionada & aplicagédo de tratamentos térmicos a acos. A obtengdo das propriedades
ideais de um ago estd relacionada tanto com sua composi¢do quimica quanto com
0s processos de tratamento térmico aos quais ele é submetido (TOTTEN, 2006).
Tratamentos térmicos podem ser utilizados para aumentar ou diminuir a ductilidade,
dureza, tenséo de escoamento ou tenacidade, otimizando essas propriedades para a
finalidade do material (SILVA; MEI, 2010).

A austenitizagdo é a etapa que precede um tratamento térmico e consiste em
aguecer 0 aco a uma temperatura em que haja formagao da austenita. Esta pode ser
parcial, quando se encontra na faixa de transformagéo (ou seja, entre as temperatu-
ras A1 e A3), ou total, quando esta acima do intervalo de transformagéo (acima da
temperatura A3) (ASM International, 1991).

A partir do ago na forma de austenita, é possivel fazer o recozimento, ou seja,
o resfriamento lento para reduzir tensdes, diminuir dureza, melhorar a usinabilidade
ou ajustar o tamanho do grao, reduzindo assim influéncias de tratamentos térmicos
ou mecanicos anteriores. Para agos hipoeutetdides a temperatura é de aproximada-
mente 50°C acima de A3, enquanto para hipereutetdides é de 50°C acima de A1,
néo podendo ultrapassar A3 pois em um resfriamento posterior formaria cementita
nos contornos de gréao da austenita, fragilizando a pega tratada. Quando se deseja
uma estrutura perlitica, prefere-se temperaturas de austenitizagdo mais altas, e mais
baixas para estrutura esferoidizada. Para ambos os casos, quanto mais préxima de
A1 for a temperatura de transformagao da austenita, mais grosseira serd a estrutura .

Outro tipo de tratamento térmico é a normalizagao, que apds austenitizacao res-
fria lentamente o ago ao ar parado ou agitado, sendo recomendada para homoge-
neizar a estrutura apés forjamento ou antes de outros processos, como témpera ou

e e —
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revenimento. Em acos hipoeutetdides, causa um espagamento entre as lamelas da
perlita, tornando-a mais fina. A dureza e a resisténcia mecéanica ficam mais elevadas
e a dutilidade mais baixa. Para hipereutetdides, distribui-se melhor os carbonetos, pois
a temperatura de austenitizagdo ocorre acima de A3.

Um terceiro tipo de processo muito importante é a témpera, que consiste em
resfriar o aco austenitizado rapidamente a fim de obter a estrutura metaestavel mar-
tensitica. O teor de carbono aumenta a dureza da martensita e diminui a temperatura
necessaria para que o processo ocorra. Essa temperatura depende nao sé da compo-
si¢&o do ago, mas também da taxa de resfriamento, e é chamada de Ms. Por depender
de fatores cinéticos, essa temperatura critica nao seré o foco do presente trabalho.

A formagao de martensita aumenta a dureza do ago, entretanto o torna mais
fragil. Para melhorar a resisténcia mecénica e tenacidade do material temperado,
realiza-se o revenimento da martensita, aquecendo o ago até temperatura inferior a
de austenitizacdo, mantendo-a até que as propriedades desejadas sejam alcancadas
(SILVA; MEI, 2010). Como a martensita é uma solugédo supersaturada de carbono,
durante o revenimento o ferro o rejeita na forma de carbonetos em uma matriz de ferro
o (HONEYCOMBE, 1982).

3.5 EFEITO DOS ELEMENTOS DE LIGA NAS TEMPERATURAS CRITICAS E TRA-
TAMENTO TERMICO

Os elementos de liga sao adicionados ao ago para modificar as fases ou cons-
tituintes em equilibrio, bem como alterar a maneira como essas fases se formam
(SILVA; MEI, 2010).

Os elementos de liga podem ser classificados de acordo com sua influéncia no
campo austenitico, que por sua vez esta relacionada a estrutura eletrdnica dos ele-
mentos. Sao eles:

+ Classe 1: elementos de dominio y aberto (Figura 5a), podendo até mesmo elimi-
nar completamente a fase o em concentrages suficientemente altas. Assim, as
transformagbes y — o ocorrem a temperaturas menores, ou seja, A3 diminui e
pode haver casos em que na@o ha a temperatura A1. Fazem parte desse grupo:
Niquel, Manganés, Cobalto, Ruténio, Rédio, Paladio, Osmio, Iridio e Platina.

* Classe 2: elementos de dominio y expandido (Figura 5b) até a formagédo de um
composto de ferro. Essa expansao é responsavel por formar solugao sélida homo-
génea, sendo muito importante para o tratamento térmico dos agos. Pertencem a

e ———— Y N ——————e———es R —
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esse grupo o Carbono e o Nitrogénio, que diminuem o valor de A3.

» Classe 3: dominio y fechado (Figura 5c), elementos que favorecem a expansao
do dominio a., que circunda o campo austenitico, formando uma regido chamada
de ilha gama ou y-loop. Estes aumentam Al e pode haver casos em que A3 nao
existe. Essas ligas ndo podem passar por tratamento térmico de arrefecimento
através da transformacao vy — a. Fazem parte desse grupo: Silicio, Aluminio,
Berilio, Fésforo e elementos fortemente formadores de carboneto, como Titanio,

Vanadio, Molibdénio e Cromo.

» Classe 4: dominio y contraido mas ha formagao de compostos de ferro (Figura
5d). Os elementos Boro, Enxofre, Tantalo, Niébio, Zircdnio estdo nessa categoria
(HONEYCOMBE, 1982) (SILVA; MEI, 2010).
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Figura 5 - Classificagio dos dominios v sob influéncia dos elementos de liga: a) aberto; b) expandido;
c) fechado; d) contraido. (HONEYCOMBE, 1982)
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3.6 DETERMINAGCAO DAS TEMPERATURAS CRITICAS

Sao reportadas na literatura diversas formas de determinagao de temperaturas
criticas de agos, sejam de forma experimental ou computacional.

Transformacotes de fase do ago causam contragao ou expansao do material, de-
vido as diferentes densidades das fases que se formam ou dissolvem. A dilatometria
é um método de determinagédo experimental de deteccéo de transformacgdes de fa-
ses através da coleta de sinais de mudanga nas dimensdes do corpo de prova bem
como sua temperatura. As temperaturas criticas de transformag¢ao podem entao ser
determinadas graficamente pelas inflexdes nas curvas da dilatagdo em funcao da tem-
peratura, como as mostradas na Figura 6. Na Figura 6, na nomenclatura utilizada pelo
autor, a temperatura A1 equivale a Ag1p, A1’ corresponde a Ac1k, € a temperatura A3
é a temperatura Acs ou Acm. Apesar de preciso, o equipamento tem custo elevado e
necessita de pessoas capacitadas para opera-lo.

b)

Figura 6 - Determinagao grafica das temperaturas criticas em ago (a) hipoeutetdide, (b) eutetdide e (c)
hipoeutetdide, a partir de dados do dilatdmetro (PAWLOWSKI, 2012)

Outro método de determinar as temperaturas criticas de transformagao é através
de softwares de termodinamica cbmputacional, como o Thermo-Calc®, que calculam
as variaveis de estado (e.g., fragdo de fases, composicdo das fases) baseados nos
principios termodinamicos (minimizagao da energia livre de Gibbs). Estes softwares
acessam bases de dados termodinamicos que fornecem informagdes dos parametros
de interagédo dos elementos quimicos para determinadas fases, que entéo sdo utiliza-
dos para o célculo da energia livre de Gibbs. A precisdo dos célculos computacionais
é precisa e tem sido constantemente avaliada na literatura. Entretanto, tanto software
quanto o acesso aos bancos de dados é normalmente pago, e requer-se certo apren-
dizado para sua manipulagao.

Uma terceira maneira é a utilizagdo de equagdes empiricas que se baseiam na
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concentragdo em massa doé elementos presentes no ago. A elaboragao dessas equa-
¢Oes envolve um método de regressao miltipla. Gorni (2012) compilou diversas fér-
mulas para o calculo das temperaturas de transformagao para austenita A1 e A3. Abai-
x0s sdo mostradas duas equagdes para o calculo das temperaturas A1 e A3, conforme
propostas por Andrews (1965):

A1 =723 —-16.9Ni +29.1Si + 6.38W = 10.7Mn + 16.9Cr + 290As (1)
A3 = 910-203VC + 44.7Si—15.2Ni + 31.5Mo + 104V + 13.1W —30.0Mn
+11.0Cr + 20.0Cu — 700P — 400Al — 120As — 400Ti (2)

E importante ressaltar que essas equagbes s&o validas apenas para teores de
carbono abaixo de 0.6% (ANDREWS, 1965).

3.7 APRENDIZADO DE MAQUINA E A DETERMINACAO DE TEMPERATURAS CRI-
TICAS

Dada a complexidade e o custo de desenvolvimento de um novo material, estudos
recentes tém se voltado para a tecnologia como primeira forma de avaliar hipdteses
(BELISLE et al., 2015). Uma vez que muitas variaveis estdo envolvidas na determi-
nacdo de uma propriedade, tornaram-se populares algoritmos capazes de aprender
com alguma experiéncia vinda de um conjunto de tarefas, cujo desempenho melhora
quanto maior sua experiéncia, também chamados de machine learning, ou aprendi-
zado de maquina.

Esses algoritmos podem ser classificados entre supervisionados e néo super-
visionados. Ele é dito supervisionado quando recebe um banco de dados com as
respostas certas e a partir delas prevé um valor para dada situagao (regressdo) ou
faz uma classificagao binaria. Ja o algoritmo ndo supervisionado nao sabe quais sdo
as respostas certas; ele é alimentado com dados para que se encontre um padréo
(clusterizacéo) 1.

No campo da engenharia de materiais, os algoritmos mais utilizados sdo os su-
pervisionados, uma vez que pode-se reunir dados tedricos ou experimentais e a partir
deles fazer a predi¢ao de propriedades. Diversas fungdes podem ser utilizadas para
esse fim, cada uma com certa eficiéncia, e segundo o teorema “No Free Lunch” de
Wolpert e Macready apud Bélisle et al. (2015), ndo existe um algoritmo perfeito.

!Informagdes extraidas das video aulas do curso de Machine Learning ministrado por Andrew Ng,
dispenivel em <https:/pt.coursera.org/learn/machine-learning>

_
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Dentre os métodos supervisionados, destacam-se os algoritmos que foram explo-
rados nesse trabalho.

3.7.1 Modelos de regressao

Uma das formas mais simples de aprendizado de maquina sdo modelos de re-
gressao. Uma analise de regresséo procura descrever as relagées entre uma variavel
dependente (também chamada de variavel de resposta) e variaveis independentes.

Em particular, modelos de regressao linear sdo aqueles em que a relagéo entre
as variaveis dependente e independentes pode ser descrita por uma relagio linear do
tipo:

y =Bo + B1X1 +PoXo + -+ PXy + €
k
=B+ > Bixi+e (3)
=1

em que y representa a variavel dependente e Xj e Bj correspondem as variaveis de-
pendentes e aos coeficientes de regressao.

O modelo de regresséo também pode ser descrito por uma equacéo polinomial.
A equacéo 4 abaixo representa um modelo de regressdo em que a relagdo entre
as variaveis é descrita por um polinémio de segunda ordem. Esse tipo de modelo de
regresséo é também chamado de modelo de superficie de reposta de segunda ordem.

kK k K
y=Bo+ > Bixi+> > Byxixj+e (4)
i=1

i=1 =i
Note-se que o modelo descrito pela equagéo 4 também se trata de um modelo
de regresséo linear, uma vez que os termos de segunda ordem podem ser redefinidos
como novas variaveis independentes de primeira ordem. De forma a ilustrar melhor
esta situagao, tome-se como exemplo o seguinte modelo de segunda ordem com duas
variaveis x1 € Xo:

2 2
y =Bo +B1Xy + BaXo + P11X1° + PooXo® + ProXiXo + € (5)
Definindo Xgq = X-|2, Xq = X22, X5 = X1Xo, [_))3 = 512, B4 = 622 e B5 = B1 Bg, entdo a

equagéao 5 se torna:

Yy = Bo + B1Xq + BoXa + BaX3 + PgXq + Bsxs + € (6)

S —————— e ——————— e,
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que possui a mesma forma que a equagao 3 do modelo de regressao linear.

Os coeficientes de regressdes multivariaveis geralmente sio estimados pelo mé-
todo dos minimos quadrados, que consiste em minimizar a soma dos quadrados dos
desvios, representada pela equagédo 7 a seguir. Os minimos sdo encontrados nos
pontos em que a derivada em relagéo a cada  é zero (MONTGOMERY, 2018).

k k
L= (yi=Bo~D_Bx;)? (7)
i=1 j=1

Uma vez determinado o modelo de regressao, certas métricas podem ser aplica-
das a fim de se averiguar sua qualidade de predi¢do. A primeira e mais simples de
todas € o Erro Quadratico Médio (MSE, sigla em inglés), que calcula a média das di-
ferengas entre o valor esperado (y) e o valor predito (yp) elevadas ao quadrado, como
mostra a equagao 8. Quanto maior seu valor, menos preciso € o modelo.

k
MSE = %Z(yi ~Ypi)? (8)
it

A vantagem de utilizar essa métrica é identificar com facilidade valores preditos
inesperados. Por outro lado, o fato de o erro estar ao quadrado pode subestimar ou
superestimar a previsibilidade do modelo, principalmente se o banco de dados contiver
ruidos. v

A segunda métrica é o Coeficiente de Determinacdo, ou R%. Esta relacionado
com o MSE, porém seus valores variam de —oc a 1, 0 que simplifica sua comparagao.
Um valor negativo significa que o modelo é pior do que a previsdo da média, enquanto
um valor préximo de um significa que o erro esta préximo de zero. O célculo é feito
a partir do MSE do modelo, descrito na equagao 8, e do MSE da previsdo da média,
mostrado na equagdo 9 abaixo, onde p é a média dos valores esperados. Em resumo,
o RZ mede o quéo bom o modelo é em relag@o ao modelo da média (DRAKOS, 2018).

k
MSE = 2 3 (i~ 2 ©)
=1

Existem outras métricas para avaliagio das predigées, mas no presente trabalho
serdo utilizadas apenas as citadas acima.
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3.7.2 Rede Neural Artificial

Um segundo método é a rede neural. Inspirada no cérebro humano, baseia-se
em associagdes para fazer previsdes, sendo muito utilizada para reconhecimento de
padrdes. E indicada para funcdes nio lineares e pode identificar relagdes comple-
xas entre variaveis independentes. A desvantagem € o maior tempo computacional
necessario (BELISLE et al., 2015).

A rede neural artificial € um conjunto de neurdnios de software organizados em
camadas, conectados de forma que possibilita a comunicagao entre eles. Como mos-
tra a Figura 7, ela tem uma camada de entrada, uma ou mais camadas intermediarias
e outra de saida.

Camada Camada Camada
de entrada intermediaria de saida

7"1\' S

Figura 7 - Arquitetura da rede neural

Para o exemplo da Figura 7, a primeira camada recebe uma entrada X de cinco
dados n vezes, sendo n o tamanho do banco de dados utilizado no treinamento. Os
neurdnios da camada intermediaria recebem o vetor X com as 5 entradas para calcular
o valor predito Y. Para cada neurdnio existem os vetores de peso e os vieses (ou bias),
que a principio sdo randémicos. O vetor X € multiplicado pelo vetor de peso e depois
adicionado ao viés, como mostra a Equagéo 10. Como os valores dos pesos e vieses
séo aleatérios, o valor da saida inicialmente é bem diferente do esperado. A cada
iteragéo, 0s pesos sdo alterados até atingir um resultado satisfatério, etapa chamada
de treinamento da rede neural (BHADESHIA, 1999). Uma fungao de perda calcula o
quao longe o modelo esta da solugéo ideal e seu valor diminui conforme a preciséo
aumenta.

h



27

Z=b+W{X{ + WoXp + W3X3 + ... + WpXp (10)

Como mostra a Figura 8, o resultado de cada iteracdo passa por uma fungao de
ativagao e, de acordo com o resultado, se define a préxima conexao. Entre as fungdes
mais utilizadas, estdo a sigmoéide, que por gerar valores entre 0 e 1 é utilizada em
algoritmos de classificagdo, a RelU, sigla para “Rectified Linear Unit”, e a tangente
hiperbdlica, descrita na equagdo 11 (SKALSKI, 2017). Essa ultima foi a escolhida no
presente trabalho por ser usada anteriormente por Capdevila et al. (2004) e Gavard et
al. (1996).

Figura 8 - Operagdes em um Unico neurdnio (SKALSKI, 2017)

2

tanh(X) = m —

1 (11)

O processo de aprendizado da rede neural envolve a otimizagdo dos pesos e
vieses para minimizar o valor da fungéo perda, o que é calculado a partir do método
de gradiente descendente, ou seja, a minimizagdo das derivadas da fun¢do perda
em relag@o a cada pardmetro da rede. O algoritmo de retropropagagéo compara os
valores obtidos com os esperados e reajusta os parametros da rede.

Esse ajuste é controlado pela taxa de aprendizado, uma variavel de extrema im-
portancia, posto que um valor muito baixo torna a convergéncia muito lenta e um valor
muito alto pode néo convergir (SKALSKI, 2017).

As métricas de avaliagdo da predicdo sdo as mesmas utilizadas na regressio
linear, somadas a avaliagao do valor final da fungéo perda.
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3.7.3 Preparagao dos Dados

Sabendo como funcionam os modelos de aprendizado de maquina, é importante
realizar um bom preparo dos dadbs, dada sua influéncia na previsibilidade do modelo.

Uma das maiores preocupacdes em relagao aos algoritmos de aprendizado de
maquina é o overfit. Esse termo é utilizado quando um modelo é muito bem treinado
para um certo conjunto de dados, porém tem uma previsibilidade ruim para dados
novos. Esse problema é mais provavel de ocorrer quando se elabora um modelo mais
complexo do que o necessario. Por outro lado, o termo underfit é usado quando o
modelo ndo se ajusta aos dados de treinamento e também nao pode ser usado para
prever novos dados.

Assim sendo, é importante dividir 0 banco de dados disponivel entre dados de
treino, com o qual 0 modelo aprende, e dados de teste, para avaliar a predi¢cdo do mo-
delo para novos dados. A proporgdo do tamanho dos conjuntos de dados depende do
tamanho do banco original. A proporgao 80% treino e 20% teste é considerada segura
por estudos mais recentes (BRONSHTEIN, 2017), embora o trabalho de Gavard et al.
(1996) utilize 50%.

Outra forma de preparagéo € a padronizagao dos dados, que consiste em deixa-
los entre -1 e 1. Isso pode ser feito pela normalizago, que utiliza a média (i) e o desvio
padréo (o), como mosta a equagao 12, ou pela padronizagdo MinMax, utilizando os
valores maximos e minimos, como mostra a equagao 13.

S X —=min(X)
~ max(X) —min(X)

(13)

A padronizagao é importante para tornar o treinamento menos sensivel a mag-
nitude dos dados, o que pode influenciar na convergéncia do modelo (RASCHKA,
2014).
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4 METODOLOGIA

4.1 O BANCO DE DADOS

4.1.1 Escolha das variaveis

A primeira etapa para elaboragdo de um algoritmo de aprendizado de méquina
é a construgdo do banco de dados utilizado em seu treinamento. Para este trabalho,
utilizou-se dados extraidos do software Thermo-Calc®, devido & sua acessibilidade.

Inicialmente, discutiu-se os elementos de liga e suas respectivas faixas de com-
posigdo quimica nos agos estudados. Foram considerados apenas os mais comuns
agos de engenharia, cujas composi¢oes foram consultados em um handbook SAE
(SAE Society of Automotive Engineers, 1983). N&o foram consideradas as compo-
siges relativas aos agos inoxidaveis. A Tabela 1 mostra as faixas de composi¢des
escolhidas para criagdo do banco de dados de temperaturas criticas.

Tabela 1 - Faixas de composigdo quimica dos elementos de liga

Elemento de liga % minima % maxima

Carbono 0 1,5
Manganés 1x 108 3,0
Silicio 1 x107® 3,0
Cromo 1 x 1076 3,0
Niquel 1x1078 3,0

Também discutiu-se a faixa de temperatura a ser estudada. Para isso, analisou-
se os diagramas binarios para cada elemento de liga, que podem ser encontrados no
Anexo A, e observou-se suas temperaturas criticas. Considerando a temperatura em
que pode ser observada austenita, utilizou-se o intervalo de 673 a 1473K.

Definidas as faixas de composigdo quimica e temperatura, foram definidos os
niveis para cada elemento, ou seja, quantas variagdes (ou passos) cada elemento
tem. O valor do passo ¢ dado pela equagéo a seguir:

passo = (14)

n—1
Assim, os niveis e passos utilizados para cada elemento sdo dados na Tabela 2.
Ja para a temperatura, estabeleceu-se um passo de 10K. A partir da combinagéo
desses valores de composicéo, um script faz a chamada do Thermo-Calc®. Dessa

—
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Tabela 2 - Niveis e passos para cada elemento de liga

Elemento de liga Niveis Valor do passo

Carbono 11 0,15
Manganés 5 0,75
Silicio 5 0,75
Cromo 5 0,75
Niquel 5 0,75

forma, para dada composi¢do quimica, sdo retornadas as porcentagens de cada fase
(ferrita, austenita e cementita) para cada temperatura dentro da faixa estabelecida. O
resultado da chamada do Thermo-Calc® é salvo em um arquivo de texto de extenséo
“.DAT”. No total, foram gerados 6875 arquivos.

4.1.2 Extracao de temperaturas criticas

Para cada arquivo gerado pela chamada do Thermo-Calc®, as temperaturas cri-
ticas foram calculadas por meio de outro script. Este faz a leitura do arquivo .DAT,
que contém as porcentagens de cada fase para cada temperatura entre 673 e 1473K,
variando em 10K.

Para determinar a At, identifica-se a maior temperatura em que a porcentagem
de austenita é zero, enquanto que para a temperatura A3, identifica-se a menor tem-
peratura em que a porcentagem de austenita é 100%. Também identificou-se a tem-
peratura critica intermediaria, A1’, e se o aco da respectiva simulagéo é hipo ou hi-
pereutetoide. Para isso, comparou-se a temperatura em que a porcentagem de ferrita
é zero (Ter) cOm a que a porcentagem de cementita é zero (Tcem). Caso T, Seja
maior que Tcem, A1' é igual a Tcem € 0 ago é hipoeutetdide; caso contrério, A1’ é igual
a Tier € 0 ago é hipereutetdide. Uma terceira situagdo € a aquela em que nédo ha
cementita para a composicéo dada e assim n&o ha campo trifasico e A1’ seria igual a
Al.

Os dados do nome do arquivo, o nimero da macro que fez sua chamada, compo-
si¢do quimica, temperaturas criticas e classificagdo em hipo ou hiper eutetéide foram

salvos em um arquivo CSV.
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4.1.3 Avaliacdo do banco de dados

Foram realizados testes para averiguar a qualidade dos dados extraidos do Thermo-
Calc®. '

Para avaliar a coeréncia, foi elaborado um script que plota simultaneamente o
grafico da porcentagem de austenita em fungéo da temperatura, comparando dados
da tabela de resultado com dados de uma Gnica chamada do Thermo-Calc®. Dessa
forma, foi possivel testar resultados pontuais considerados inconsistentes.

Outro teste realizado foi a verificacdo da existéncia das fases ferrita, austenita e
cementita, para averiguar quais composi¢ées poderiam ser problematicas para deter-
minar as temperaturas criticas.

Uma importante verificagdo da base de dados como um todo foi a comparagao
com os resultados das equagdes empiricas de Andrews. Para cada composicao qui-
mica do banco de dados, calculou-se as temperaturas criticas A1 e A3 pelas equagdes
empiricas. A partir disso, gerou-se um gréfico de temperatura critica calculada versus
temperatura critica gerada pelo Thermo-Calc®.

A fim de avaliar o efeito de cada elemento na temperatura critica A3, foram traca-
das isopletas com a composicdo de carbono como variavel livre e diferentes composi-
¢Oes de cada elemento.

4.2 REGRESSAO LINEAR

Analisou-se a predigdo das temperaturas A1, A1’ e A3 atraves de algoritmos de
regressao linear multivariavel.

Primeiramente, o banco de dados gerado conforme a secgao 4.1 foi manipulado,
transformando as composigdes para porcentagem em peso e as temperaturas para
graus Celsius, além de remover os dados cujas temperaturas criticas nao existissem.
A fim de avaliar o efeito dos termos ao quadrado e da interdependéncia entre ele-
mentos quimicos no valor das temperaturas criticas, foram criados novos parametros,
totalizando os seguintes: C, C2, CMn, CSi, CCr, CNi, Mn, Mn2, MnSi, MnCr, MnNi, Si,
Si2, SiCr, SiNi, Cr, Cr2, CrNi, Ni, Ni2.

Em seguida, o banco de dados foi separado entre dados de treino e dados de
teste para o algoritmo. Utilizou-se a proporgdo 80% treino e 20% teste, selecionando
dados com um algoritmo pseudoaleatério, ou seja, para uma mesma semente sdo
selecionados os mesmos dados.

Na sequéncia, os dados de treino foram utilizados para gerar modelos de regres-

*



32
sao linear multivariavel, utilizando o Scikit-learn. Essa biblioteca do Python contém
funcoes eficientes de aprendizado de maquina, incluindo o médulo /inear_model, no
gual se espera que o valor alvo séja uma combinacgao linear dos dados de entrada.

Para cada temperatura critica, foi gerado um modelo para composi¢des hipoeu-
tetéides, um para hipereutetéides e um para todas as composigoes, totalizando nove
modelos. Para cada modelo obteve-se os coeficientes de regressédo de cada varia-
vel independente e calculou-se o coeficiente de determinagao (R?) da predigdo do
modelo.

Para cada modelo, foram plotados graficos de valores preditos versus valores
esperados para o conjunto de dados de teste, além de isopletas de A3 com os dados
de treino e de teste, para posterior comparagdo com as isopletas da rede neural. Para
a isopleta do carbono, utilizou-se tanto o modelo hipoeutetdide quanto hipereutetdide
para prever o valor de A3 para os demais elementos no nivel zero. Ja para as demais
isopletas, utilizou-se apenas o modelo hipoeutetéide, pois para nivel zero de carbono
ndo ha agos hipereutetdides.

Visto que os valores de R2 foram muito satisfatorios, realizou-se um novo teste, a
fim de verificar a possibilidade de overfit. Para isso, gerou-se um novo banco de dados
de teste, de tamanho equivalente a 20% ac do banco original, utilizando o algoritmo
rand do Numpy, que retorna nimeros aleatérios distribuidos uniformemente de 0 a
1. Em seguida esses numeros foram multiplicados pelas composi¢gdes maximas do
elemento quimico correspondente, a fim de se obter ligas dentro das faixas de com-
posicao estudadas. Por fim, foram rodados os scripts para determinar a temperatura
dada pelo Thermo-Calc®, descritos na secgdo 4.1. Novos calculos de R2 foram feitos
e comparados com os originais.

4.3 REDE NEURAL

Dado que a temperatura A3 é a mais complexa de se determinar, devido & inver-
sdo da curva no ponto eutetbide, para essa temperatura critica foi elaborada uma rede
neural, de arquitetura semelhante a mostrada na Figura 7.

Para isso, houve o mesmo tratamento de dados descrito na secgao 4.2, trans-
formando as composi¢des para porcentagem em peso, as temperaturas para graus
Celsius, e removendo os dados cujas temperaturas criticas nao existissem. Também
foi feita a mesma separagéo entre dados de treino e teste, utilizando a mesma propor-
¢ao de 80/20%, respectivamente.

Além desses procedimentos, a rede neural exige que os dados sejam normaliza-
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dos para que haja melhor convergéncia, uma vez que a fungéo de ativagéo escolhida
para o modelo foi a de tangente hiperbdlica. Foi utilizado o MinMax Scaler, fungao
do médulo Scikit-learn do Python, que reduz o intervalo dos dados para que estejam
entreO0e 1.

Para construcéo da rede neural, foi utilizado o Keras, uma API de alto nivel escrita
em Python e cujo backend pode ser rodado em TensorFlow, CNTK ou Theano. Para
esse caso, foi utilizado o TensorFlow. Essa biblioteca tem como maior vantagem a
agilidade para criar modelos complexos, facilitando a elaboragao de testes (SKALSKI,
2017). .

Como valor de saida foi estabelecido A3, enquanto as porcentagens em peso de
C, Mn, Si, Cr, Ni foram definidas como valores de entrada. Foram variados o nimero
de neurénios na camada intermediaria, de 1 a 12, bem como a taxa de aprendizado
(ou learning rate) de 0.1, 0.01 e 0.001. Foram plotados gréficos de Erro quadrético
médio versus nimero de neurdnios na camada intermediaria, com o intuito de estipular
um ponto 6timo desses parametros, como realizado no trabalho de Capdevila et al.
(2004). Para um mesmo nimero de neurénios, foram testados 5 modelos, uma vez
que 0s pesos e vieses iniciais sdo aleatérios e podem influenciar no resultado final.

Definida a taxa de aprendizado que apresentava melhor estabilidade do erro qua-
dratico médio, avaliou-se o efeito do nimero de neurdnios na camada interna na fun-
¢ao perda e nos valores preditos. Foram plotados gréaficos de fungéo perda versus
nimero de iteragdes, bem como .de valores preditos versus valores esperados, para
nimero de neurdnios na camada intermediaria de 1 a 12.

Estabelecendo o ponto étimo de nimero de neurdnios, foram plotadas isopletas
comparando os dados de treino com de teste, foram calculados o coeficiente de de-
terminagao (R2) e o erro quadratico médio (MSE) da predi¢do do modelo.

4.4 COMPARACAO DOS MODELOS

Para se comparar a assertividade dos modelos, foram comparados os coeficien-
tes de determinagdo de regresséo linear, rede neural e Equagao Empirica de Andrews

para predigdo da temperatura A3.
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5 RESULTADOS E DISCUSSAO

5.1 O BANCO DE DADOS

O resultado da variagdo de composigdo quimica para agos carbono gerou um
total de 6875 combinagdes e, para cada, fez-se a chamada do Thermo-Calc® que
retorna a porcentagem de cada fase para temperaturas de 673 a 1473K, variando de
10K. Para cada composigao, os dados sdo salvos em um arquivo .DAT.

Inicialmente, sete macros faziam a chamada do Thermo-Calc® com 1000 compo-
sicoes cada. Isso trouxe resultados muito inconsistentes, como valores em branco ou
ou incoerentes com a literatura, e podem estar relacionados a sobrecarga de memdria
do computador. Notou-se que, quanto menos chamadas cada macro fazia, menor o
numero de erros nos resultados e, assim, chegou-se ao nimero de 69 macros com
100 chamadas cada.

Em seguida, para cada arquivo, extraiu-se as temperaturas criticas A1, A1’ e A3.
A Figura 9 ilustra a légica dessa extragao. A temperatura A1’ é representada pela mu-
danca de inclinagao na curva da porcentagem de austenita. Para agos hipoeutetoides,
essa temperatura corresponde ao ponto em que a porcentagem de cementita é zero,
como mostra a Figura 9a. Ja para hipereutetdides, ao ponto em que a porcentagem
de ferrita € zero, como na Figura 9b. Enquanto isso, para agos em que a porcentagem
de cementita é sempre zero, considera-se que a temperatura A1’ é igual a A1 (vide
Figura 9c).

E importante destacar que nem sempre um aco tera as trés temperaturas criti-
cas. Elementos muito alfagénicos podem néao ter A3, como no caso de um v loop, e
gamagénicos podem nao ter A1, por terem austenita estavel a temperatura ambiente.

Mesmo considerando que algumas temperaturas criticas podem nao existir para
certas composigcdes, ainda ndo se sabe as causas dos erros que ocorreram nessa
extragdo. Por exemplo, algumas composigdes com baixo carbono ficaram com valores
em branco, enquanto outras tiveram valores de temperatura critica muito acima do
esperado, embora os graficos plotados para sua respectiva composi¢cao estivessem
dentro do esperado. Assim, foi feito um script que faz essa corregdo, fazendo apenas
uma chamada do Thermo-Calc® por vez.

Foi realizada uma comparagao dos valores de temperatura critica com a equagéo
empirica de Andrews, plotando o grafico da Figura 10. A linha em azul representa os
valores esperados (Tempirical = Tdatabase)-

Nota-se que, para as temperaturas A3, existe uma correlagdo maior com os va-
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Figura 9 - Exemplos de extragao de temperaturas criticas para a) liga hipoeutetéide, b) liga hipereute-

téide e c) liga hipoeutetdide sem cementita

lores calculados pela equagdo empirica, enquanto para A1 existe uma divergéncia
maior. Isso pode estar relacionado com o fato de a equagéo de Andrews nao ter mem-
bros interdependentes entre os elementos quimicos, o que na pratica nao se aplica.
Para averiguar essa interdependéncia, plotou-se as isopletas de temperatura para
cada elemento, variando a composi¢ao de carbono. Para cada elemento de liga,
plotou-se cinco curvas, correspondentes-aos cinco niveis de composig¢ao escolhidos,
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Figura 10 - Grafico de temperatura critica calculada pela equagao empirica de Andrews e temperatura
critica do banco de dados

mostradas na Figura 11.

Para o manganés e niquel, nota-se que a baixas concentragbes de carbono a
concentragdo do elemento de liga tem muita interferéncia no valor das temperaturas
de transformacéo. A partir de 0,8% C, as temperaturas sdo mais préximas para todos
os niveis. Uma possivel explica¢ao é que os trés elementos sdo gamagénicos.

Ja para elementos alfagénicbs, como o cromo, a relagdo se inverte. Para baixas
concentragdes de carbono, os valores de temperatura ficam préximos, e a partir de
0,4% de carbono a concentragao do cromo ja contribui para sua divergéncia.

Um caso intermediario é o do silicio, que apesar de alfagénico, tem influéncia na
temperatura tanto a baixas quantb a mais altas concentragdes de carbono, embora a
influéncia a baixas concentrages seja maior.
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Figura 11 - Isopletas de temperatura variando Carbono para composicées do banco de dados de: (a)
Manganés, (b) Silicio, {(c) Cromo, (d) Niquel

5.2 REGRESSAO LINEAR

Apds o tratamento dos dados, pontos cuja temperatura critica correspondente nao
existisse foram eliminados e os dados foram separados entre hipo e hipereutetdide. A
Tabela 3 mostra o tamanho do banco de dados para cada condigao.

Tabela 3 - Tamanho dos conjuntos de dados usados para regresséo linear

A1l A1’ A3
Hipoeutetéide 1151 1643 2303
Hipereutetdide 3308 4339 4542
Total 4459 5982 6845

Os valores de R? para os nove modelos sdo mostrados na Tabela 4 a seguir.
Nota-se que o conjunto de dados para determinar a temperatura A1 é o menor.
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Tabela 4 - Valores de R? para regresséo linear

A1 ATl A3
Hipoeutetéide  0.8663 0.9743 0.9607
Hipereutetdide  0.9817 0.9934 0.9971
Todos os dados 0.9425 0.9748 0.8774

Isso ocorre pois trés dos cinco elementos estudados sdo gamagénicos, reduzindo a
probabilidade de existir A1. A quantidade reduzida de dados teve efeito no valor de
R2, o menos satisfatorio dos modelos, principalmente para os pontos hipoeutetdides.
Os valores de R? obtidos foram satisfatérios porém muito altos, por isso houve o
cuidado em se verificar a possibilidade de overfit, como sera mostrado a seguir.

5.2.1 Regressao Linear de A1

A Figura 12 a seguir mostra os gréficos de valores preditos versus esperados para
a temperatura Al.

Nota-se que, mesmo com a quantidade de dados reduzida, esses tiveram um
bom ajuste com a retay = x. Os problemas estéo localizados no extremo inferior,
onde a curva de A1 no diagrama binario Fe-C ndo se assemelha a uma reta. Essa
faixa corresponde as temperaturas mais baixas dos hipoeutetdides, onde ha poucos
pontos devido & proximidade do campo o, no qual A1 nio existe.

5.2.2 Regressao Linear de A1’

A Figura 13 a seguir mostra os gréficos de valores preditos versus esperados para
a temperatura A1’.

A temperatura A1’, assim como A1, é mais dificil de ser determinada na proximi-
dade do campo a, como é possivel notar nas temperaturas mais baixas dos hipoeu-
tetdides. O maior nimero de dados utilizados para o treino resultou em um melhor
ajuste das curvas.

5.2.3 Regressao Linear de A3

A Figura 14 a seguir mostra os graficos de valores preditos versus esperados para
a temperatura AS.

e —————— e ————
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Figura 12 - Valores preditos vs. Valores esperados da regresséo linear de A1, para (a) Hipoeutetdides,

(b) Hipereutetdides, (c) Todos os valores

Para essa temperatura critica, 0os pontos que menos se ajustaram foram os hi-

poeutetbides. Isso possivelmente ocorre pois a curva correspondente no diagrama
binario Fe-C tem uma inclinagido mais variavel do que a hipereutetoide. Aleém disso,
nota-se menor quantidade de pontos a temperaturas altas, ou seja, a baixas concen-
tracdes de carbono. As predigdes para composicdes hipereutetoides tiveram melhor
ajuste, ndo apenas pelo maior conjunto de dados mas também pela curva correspon-
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dente no diagrama binario Fe-C ter inclinacdo mais constante.
O modelo que utilizou todo o conjunto de dados ndo teve um bom ajuste, como
era esperado, devido a inversdo da curva no ponto eutetéide do diagrama binério Fe-C

h—_—ﬁ
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Figura 14 - Valores preditos vs. Valores esperados da regressao linear de A3, para (a) Hipoeutetdides,
(b) Hipereutetdides, (c) Todos os valores

5.2.4 Comparacao com banco de dados aleatérios

Ao todo foram gerados 1375 dados de teste, que passaram novamente pela predi-
¢ao para se avaliar os ajustes. As Tabelas 5, 6 e 7 a seguir mostram os novos valores
de R? recalculados para cada modelo.

Os resultados obtidos dos dados aleatdrios possibilitou uma comparagéo de mé-
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Tabela 5 - Valores de R? para regressao linear de A1 com dados aleatérios
P

Original Aleatério
Hipoeutetéide  0.8663 0.7304
Hipereutetéide 0.9817 0.9806
Todos os dados 0.9425 0.9752

Tabela 6 - Valores de R? para regresséao linear de A1’ com dados aleatérios

Original  Aleatério
Hipoeutetéide  0.9743 0.8137
Hipereutetéide - 0.9934 0.9941
Todos os dados 0.9748 0.8754

Tabela 7 - Valores de R? para regressao linear de A3 com dados aleatdrios

Original Aleatério
Hipoeutetéide  0.9607 0.9603
Hipereutetéide 0.9971  (0.9981
0.9207

Todos os dados 0.8774

tricas, uma vez que nao foi encontrado na literatura o que seria um valor satisfatério de
R? para a predigdo dessas temperaturas em especifico. Nota-se que nao houve muita
variagao dos valores originais para os aleatérios, entretanto, a hipétese de overfit nao
pode ser completamente descartada. E possivel que a alta complexidade do modelo,
devido ao grande numero de dados de entrada, esteja elevando as métricas.
5.2.5 Isopletas das Regressoes Lineares

As predicdes dos modelos de A3 foram utilizadas para gerar isopletas variando-se
um dos elementos e fixando os demais a nivel zero. Na Figura 15 a seguir, a linha azul
corresponde as predigdes do modelo hipoeutetbide e a vermelha ao hipereutetdide,
enguanto os pontos em “x” s&o os valores obtidos pelo Thermo-Calc®.

Para o Carbono, a predicdo é préxima do esperado, principalmente para hipe-

reutetdides. Ja para hipoeutetdides, quanto menor a composicdo de carbono, maior
a diferenga entre o predito e o esperado, chegando a 50°C. Como discutido ante-

riormente, ha uma mudanga de inclinagido na curva do diagrama binario Fe-C que




960

940

A3{*C)

900

Niveis [:,0,0,0,0]

1000
950 -
900
(%)
<
m B850 -
< x
800 4
X
750 4
T T T
10 12 14
(a)
Niveis [0,:,0,0,0] Niveis [0,0,:,0,0]
1075 b4
1050
1025
S 1000
2, /
950
925
x x
00 05 10 15 20 25 30 06 02 04 06 08 10 12 14
% Mn %5i
(b) (c)
Niveis [0,0,0,:,0] Niveis [0.0,0,0,:]
960
940
920
x
900
o
x i’ 880 Y3
x 50 X
x 840
x
x 820
x l
00 05 10 15 20 25 30 00 05 10 15 Zo 25 30
%cr % Ni

(d)

(e)

43

Figura 15 - Isopletas de A3 geradas pelas predigbes da regresséo linear para (a) Carbono; (b) Manga-
nés; (c) Silicio; (d) Cromo; (e) Niquel, a nivel zero dos demais elementos
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contribui para uma ma predicao do modelo.

Ja para o Manganés, Cromo e Niquel, as predicdes mantém a mesma inclinagao
do esperado, porém com uma diferenca que chega a 50 °C. O Silicio, por sua vez, ndo
teve uma boa predigao, possivelmente devido ao seu dominio Y fechado que gera um
v-loop.

5.3 REDE NEURAL

Apos o tratamento do banco, foram obtidos 6845 dados normalizados, que foram
separados entre 5476 para treino e 1369 de teste. Os parametros da rede neural foram
variados para se definir o melhor modelo.

5.3.1 Testes para obtengio do modelo

Avaliando-se o efeito da taxa de aprendizado e do nimero de neurdnios da ca-
mada intermediaria no erro quadratico médio, obteve-se os gréficos da Figura 16
abaixo.

Nota-se que, a medida em que a taxa de aprendizado diminui, a variagdo do
erro quadratico médio diminui para um mesmo nimero de neurdnios. Dessa forma,
determinou-se o valor ideal para a taxa de aprendizado, 0.001. Em seguida, foi ava-
liado o efeito do nimero de iteragcdes e do nimero de neurénios na fungdo perda. A
Figura 17 a seguir mostra o comportamento da fungéo perda com o nimero de itera-
¢Oes para um, seis e doze neurdnios.

Pode-se constatar que para poucos neurdnios a fung@o perda se estabiliza com
menos iteragbes, porém a um valor maior. Aumentando-se niimero de neurdnios, as
100 iteragGes se tornam cada vez mais necessarias para se obter um valor adequado
de perda.

Considerando a taxa de aprendizado escolhida, nota-se que o erro quadratico
médio estabiliza a partir de cinco neurdnios e que 100 iteragdes sao o suficiente para
se obter uma perda adequada. Dessa forma, foi estabelecido gue o ponto 6timo seria
de seis neurdnios e 100 iteragdes, considerando também o tempo computacional.

Para confirmar se esses parametros eram adequados, foram analisados os valo-
res preditos versus esperados variando o nimero de neurdnios. A Figura 18 a seguir
mostra esse comportamento para um, seis e doze neurénios, onde os circulos preen-
chidos mostram os dados de treino e os tridngulos, os de teste.

Nota-se que as predigdes para seis e doze neurdnios séo préximas e, conside-
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rando o tempo computacional, a primeira opgao é, de fato, o ponto 6timo.

5.3.2 Isopletas da Rede Neural

Definindo todos os parametros, as predicdes do modelo escolhido foram usadas
para plotar isopletas variando um dos elementos e fixando os demais, com o intuito
de se comparar os valores obtidos pelo Thermo-Calc® com essas predigdes. Como
mostram as Figuras 19, 20, 21, 22 e 23 os elementos variaveis foram plotados nas
composicdes de nivel zero e nivel dois, que correspondem as composi¢des minimas
e intermedidrias, respectivamente.

Nota-se que, para a maioria dos casos, os valores preditos (linha cheia) s&o sa-
tisfatorios em relagéo ao esperado (pontos em forma de “x”) .

Para o Carbono, a dificuldade esta no ajuste do ponto de inversao da curva, ponto
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Figura 17 - Perda (erro quadratico médio) vs. NGmero de iteragdes para (a) 1, (b) 6, (¢) 12 neurdnios
na camada intermediaria

mais suscetivel a erros, como foi observado na Figura 14 da regresséo linear e na
Figura 18b da predigéo da rede neural, na qual possivelmente os dados que destoam
da reta estdo préximos a esse ponto. Um conjunto de dados de treino com mais pontos
corretos dessa regido poderia contribuir para uma melhor predicao.

Para baixas concentragdes dos elementos, o modelo para o silicio foi destoante,
como mostra a Figura 21a. Uma possivel explicacdo esta no diagrama binario Fe-Si,
da Figura 25, que mostra o campo y fechado a baixas concentracoes de Si. O mesmo
vale para o cromo, que além de ser do grupo de dominio Y fechado, tem um vy-/oop.
Isso pode ter contribuido para uma ma predicdo do modelo nesses casos.

Apesar de o modelo néo ter predito tdo bem a influéncia de alguns elementos em
A3, suas métricas foram consideradas satisfatérias. Para o ponto 6timo discutido an-
teriormente, de taxa de aprendizado 0.001, seis neurdnios na camada intermediaria e
100 iteragbes, o erro quadratico médio final foi de 0.0051 e o coeficiente de determi-
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Figura 18 - Valores Preditos vs. Valores Esperados para (a) 1, (b) 6, (¢} 12 neurdnios na camada
intermediaria. e : valores de treino, v : valores de teste
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Figura 19 - Isopletas de Carbono geradas pelas predigdes da rede neural para (a) Nivel 0; (b) Nivel 2

nacdo (R?), 0.9734.




Figura 20 - Isopletas de Manganés geradas pelas predigées da rede neural para (a) Nivel 0; {b) Nivel 2

Figura 21 - Isopletas de Silicio geradas pelas predigdes da rede neural para (a) Nivel 0; (b) Nivel 2
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Figura 23 - Isopletas de Niquel geradas pelas predigdes da rede neural para (a) Nivel 0: (b} Nivel 2

5.4 COMPARAGCAO DOS MODELOS

Com o propésito de comparar os modelos de regressao linear com o de rede
neural e Equagéo de Andrews para predicao de A3, foi calculado o Coeficiente de
Determinagao de cada um deles, que pode ser visto na Tabela 8 a seguir.

Tabela 8 - Valores de R? para regressao linear e rede neural de A3

Modelo R?
Regressao Linear Hipoeutetdéide 0.9607
Regresséao Linear Hipereutetdide 0.9971

Regressao Linear Total 0.8774
Rede Neural Artificial 0.9734
Equacéao de Andrews 0.2217

E possivel constatar que a regressao linear para os hipereutetdides foi o modelo
com melhor ajuste, seguido pela rede neural e pela regressao linear hipoeutetdide. Ja
a regressao linear total teve ajuste menor, pois como discutido anteriormente, o ponto
de inversao da curva n&o é bem predito. A Equagdo de Andrews, por sua vez, nio
tem um bom ajuste com os dados do Thermo-Calc®.

O valor alto de R? para a rede neural torna menos provavel a hipétese de a re-
gressao linear apresentar overfit devido a parametros em excesso.




6 CONCLUSOES

Foi estudada a implementagéo de dois algoritmos de aprendizado de méaquina
para prever temperaturas criticas de transformagées de fase em acos comuns de en-
genharia. Para isso, foi criado um banco de dados a partir de simulagdes termodi-
namicas e algoritmos para extragdo dessas temperaturas criticas. Os dados foram
analisados mediante comparagéo com equagdes empiricas e foram tratados antes de
serem usados para o treino.

O modelo de regresséao linear mostrou um coeficiente de determinagéo alto para
a maior parte dos casos estudados, mesmo quando testado por um banco de dados
aleatdrio. Sua desvantagem foi a necessidade de separagao dos dados entre hipo e
hipereutetéide para que o modelo tivesse melhor qualidade de predicao.

A rede neural, por sua vez, foi capaz de prever a temperatura A3 sem a neces-
sidade de separagao pelo ponto eutetéide, apesar de ndo conseguir calcular tdo bem
as temperaturas proximas a esse ponto de inversdo. Seu alto coeficiente de determi-
nagao diminui a probabilidade de o modelo de regressdo estar com overfit causado
por nimero de pardmetros em excesso. Entretanto, nao foi totalmente descartada a
hipdtese de overfit e para tal deveriam ser estudadas outras métricas e realizar novos
testes com outros bancos de dados. Até entio, os valores altos dos coeficientes de
determinacdo sugerem que os modelos estudados sio capazes de descrever bem as
temperaturas criticas.

Por fim, conclui-se que os modelos de aprendizado de maquina utilizando a lin-
guagem Python tém implementacéo razoavelmente simples e podem ser aplicados a
conjuntos de dados similares, como temperaturas criticas determinadas experimental-
mente.
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7 SUGESTOES PARA TRABALHOS FUTUROS

Dado o tempo limitado para elaboragdo do trabalho, certas ideias surgiram ao
longo do processo e nao puderam ser executadas. Assim sendo, elas podem ser
utilizadas por outros alunos em trabalhos futuros.

A primeira delas é um estudo com mais profundidade da rede neural. O nimero
de camadas intermediarias poderia ser estudado para prever com melhor precisao os
valores de A3. O modelo também poderia ser aplicado as outras temperaturas criticas
para avaliar sua predig&o.

Além disso, uma analise sobre como os modelos se comportam mediante extra-
polagdo das composigdes quimicas poderia ser relevante. Até mesmo a insergéo de
novos parametros, como a taxa de aquecimento e outros elementos quimicos, como
Fésforo, Enxofre e Molibdénio, que podem influenciar nas temperaturas criticas e ndo
foram considerados.

Um terceiro projeto esta relacionado com a visualizagdo dos resultados do mo-
delo. Poderia ser elaborado um site ou aplicativo, no qual o usuario inseriria 0os pa-
rametros e esse retornaria os valores das temperaturas criticas, de forma a tornar a
ferramenta mais acessivel a comunidade cientifica.

Por fim, uma ultima ideia seria o cédlculo da porcentagem de carbono no ponto
eutetdide, o que poderia ser feito utilizando os coeficientes da regressao linear de A3
para hipo e hipereutetdides. Sabe-se que esses modelos sdo de segunda ordem, tal
qual a equacgao 4. Assim, as equagc“)es para A3 sao:

Ahlpo r Bhlpo Z l3h|poxl Z Z Bhlpox X; +€ (15)

i= 1 j=i

hi hi hi hi

ABlper_Blper ZBIperXI+ZZBlpOXXj+S (16)
i=1 j=i

No ponto eutetdide:

hipo _ ahiper hipo hiper _
Ay = AGPT = AP AP = 0 (17)

Logo:

Bhlpo huper + i ( hipo _ hlper> . i i ( h|po hlper) XiX; = 0 (18)

i=1 i=1 j=i

Definindo:




eut _ phipo hiper
I I3| - BI
eut hlpo hiper

Substituindo as definigdes acima na equagao 18, temos:

eut + Z BeutxI + Z Z Beutx X]

i=1 j=i
Reescrevendo 21 de modo a separar x4 (fragao de carbono):

Kk kK Kk
BoUt 1 BSUxy + Z BEU; + BTix 2+ > B?]“tx1 Xi+Y > B e“txixj =0
i=2 j=2 i=2 j=i
k k
t t t t t '[
it (400 ) o (160 S 33 o
i=2 =i

Dividindo todos os termos em 22 por 2p$4 e definindo:

Bihipo_Bihiper 1 Bhipo Bhiper

o =
! 2B Bhlpo l_,)hlper
hipo hiper hipo hiper
- B p B p B” po _ B” p
- 2Bq4 Bh|po Bhlper

entdo obtemos:

X2
4 (oc1 +Zoc1]xj) Xq + (aO+Zo¢x, +ZZOC”XXJ)

i=2 j=i

A equagdo 25 pode ser resolvida para x4 utilizando a férmula quadratica:

—b 4+ V' b? - 4ac

X1 = oa

emque a=1/2ebe csdo:

k
b=(X1 +Z(X1ij
c= ao+Zax,+ZZa”xx

‘=2 j=i
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(22)




Usando a substituigdo a = 1/2, a equagao 26 torna-se:

X; =—b=+ Vb2-2¢ (29)

Em suma:
hipo hiper
o = 1 Bi P —Bi P
i = e e e T
2 phipo _ phiper
BH B11
‘o hipo hiper
o Bij p _Bij p
I = o2 hipo  hiper
B11 - B11
k
b= Oq + Z (X“'Xj
j=2
k k k
C=0g+ Z X + Z Z QG XiXj
=2 i=2 j=i
x; =—b+ vVb%-2¢
b= OLC + ocCMnMn + aCSiSi + OLCCrCI' + aCNiNi (30)

C =09 + apnMn + ag;Si + o, Cr + oy Ni+
Oppnz M2 + apngi M Si+ oo, Mn Cr + o M Nit
dg2 Si¥ + ogicy Si Cr + agin; Si Ni+
Op2 Cr? + agceN; Cr Ni+
a2 Ni2 (31)

Tabela de correspondéncia:

X1 Xg X3 Xg Xs
C Mn Si Cr Ni

Assim, os valores dos coeficientes da regressao linear seriam inseridos nessas
equagoes para o célculo da porcentagem de carbono eutetéide.
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Temperature °C

ANEXO A - Diagramas binarios

Atomic Percent Manganese
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Figura 24 - Diagrama binario Fe-Mn (MASSALSKI, 1996)
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Atomic Percent Silicon
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Figura 25 - Diagrama binario Fe-Si (MASSALSKI, 1996)
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Atomic Percent Chromium
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Figura 26 - Diagrama binario Fe-Cr (MASSALSKI, 1996)
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Figura 27 - Diagrama binario Fe-Ni (MASSALSKI, 1996)




