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RESUMO

A proposta deste trabalho é avaliar diferentes algoritmos de aprendizado de máquina

para prever temperaturas críticas de transformações de fases. Cálculos de termodinâ-

mica computacional utilizando o software Thermo-Calc foram usados para gerar um

banco de dados que representasse as composições químicas de aços de engenharia.

A partir dele, foram elaborados modelos de regressão linear multivariável e uma rede

neural, cujas métricas e predições foram analisadas e comparadas entre si.

Palavras-chave: Aço. Termodinâmica. Temperaturas críticas. Aprendizado de má

quina. Regressão. Redes neurais.



ABSTRACT

The purpose of this work is to evaluate distinct machine learning algorithms to predict

critical phase transformations temperatures. Computational thermodynamics calcula-

tions using Thermo-Calc software were used to generate a database representing the

chemical compositions of engineering steels. This database was used to elaborate

multivariate linear regression models and a neural network, whose metrics and predic-

tions were analyzed and compared.

Keywords: Steel. Thermodynamlcs. Criticam temperatures. Machine learning. Re

gression. Neural Networks
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lINTRODUÇAO

Aços têm diversas aplicações industriais e sua versatilidade está relacionada à

variedade de propriedades que ele pode assumir. Além de sua composição química,

processos de tratamento térmico controlam essas propriedades, que, por sua vez, es-

tão relacionadas às temperaturas em que ocorrem as transformações de fases. Essas

temperaturas também são chamadas de temperaturas críticas e, ao longo do tempo,

foram desenvolvidos diversos métodos para determina-las. Pode-se utilizar métodos

experimentais, como a dilatometria, ou softwares de cálculos termodinâmicos, como o

Thermo-Calc®, ou ainda equações empíricas.

Novos modelos estão em desenvolvimento e entre eles estão os algoritmos de

aprendizado de máquina, cujo desempenho aumenta quanto maior for sua experiên-

cia em realizar alguma atividade. Apesar de os métodos atuais serem razoavelmente

precisos e eficientes, eles demandam certo custo de equipamento, software ou ca-

pacitação humana. Assim, uma ferramenta de cálculo de fácil acesso e utilização

permitiria melhor compreensão das temperaturas críticas para o tratamento térmico
de aços.
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2 0BJETIVOS

O presente trabalho tem como objetivo a determinação das temperaturas críticas

de transformação de fases em aços de engenharia através de algoritmos de apren-

dizado de máquina, utilizando a base de dados do software Thermo-Calc®, a fim de

futuramente disponibilizar uma ferramenta de cálculo simples de se utilizar e aberta à

comunidade científica. Além disso, o trabalho compara a acurácia dos métodos para

a predição das temperaturas desejadas.
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3 REVISÃO BIBLIOGRÁFICA

3.1 0SCOMPONENTES DOAÇO

Aços podem ser vistos como uma liga ferrosa com adições de carbono e outros

elementos de liga, dentre os quais destacam-se o manganês, silício, cromo, níquel,

entre outros (DOSSETTI BOYER, 2006). São conhecidas inúmeras combinações de

ligas de ferro e carbono que fornecem diferentes combinações de propriedades me-

cânicas, podendo apresentar altíssimas dureza e resistência (e.g., as novas gerações

de aços avançados de alta resistência), ou serem maleáveis, como em aços de baixa

liga. Tal mudança de propriedades está relacionada com as diferentes estruturas do

ferro (fases) e combinações de morfologias que o aço pode assumir.

O ferro puro em estado sólido.tem duas formas alotrópicas, ou seja, diferentes

estruturas cristalinas que dependem da temperatura e pressão. A baixas temperatu-

ras, o ferro assume a estrutura cúbica de corpo centrado (CCC) e é denominado a-Fe,

ou ferrita. Acima de 91 0 'C, a disposição atómica do ferro muda de CCC para cúbica

de faces centradas (CFC), também chamada de '-Fe, ou austenita. A estabilidade da

austenita permanece até 1400 "C, quando volta a assumir uma estrutura CCC. Esta

ferrita de alta temperatura é comumente chamada de õ-Fe devido à diferente faixa

de temperatura de ocorrência da fase cl -- Fe. Alguns autores também diferenciam a

fase j3-Fe da fase ct-Fe, ambas de estrutura CCC, pelo fato de que para temperaturas

superiores a 770 "C (temperatura de Curie) o oc-Fe perde suas propriedades ferromag-

néticas e passa a ser paramagnétíco (TOTTEN, 2006).

A partir da combinação dessas possíveis estruturas do ferro com outros elemen-

tos formam-se as ligas. Como o ferro é a base do aço e tem estruturas cristalinas

limitadas, é a sua combinação com outros átomos que resulta em diferentes proprie-

dades. O carbono possui baixa solubilidade na fase cl (0,02% em massa a 738 "C),

mas é bastante solúvel na fase ', pois a estrutura CFC permite a alocação de uma
maior fração de átomos de carbono em seus interstícios.

A porção de uma liga com estrutura e propriedades homogêneas é denominada

fase. Em equilíbrio termodinâmico, as combinações entre o carbono e o ferro podem

resultar em ferrita, austenita ou grafita, cujas relações com a temperatura e compo-

sição são mostradas no diagrama de equilíbrio da Figura 1. Nessas condições, os

constituintes do sistema Fe-C à temperatura ambiente seriam ferrita cl e grafita.

Entretanto, a condição de equilíbrio não é verificada para a maioria dos proces-

sos e, em vez de grafita, forma-se o carboneto de ferro Fe3C, também chamado de
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Figura l Diagrama de equilíbrio ferro-carbono (MASSALSKI, 1 996)

cementita. A cementita é uma fase metaestável, mas sua formação é favorecida ci-

neticamente em relação à grafita devido às elevadas taxas de resfriamento aplicadas

ao aço durante seu processamento. Para essas condições, o diagrama de fase, que é

então chamado de diagrama de equilíbrio metaestável, é dado pela Figura 2.

Um ponto importante do diagrama mostrado na Figura 2 é o ponto eutetóide, no

qual coexistem em equilíbrio as fases cl, ' e Fe3C. Para um sistema apenas ferro e

carbono, o teor de carbono correspondente a esta fase é aproximadamente 0,8% C em

massa. Ligas com teores de carbono inferiores a esta composição são denominadas

hipoeutetóides e, ligas com teores de carbono superiores à do ponto eutetóide são

chamadas de hipereutetóides(HONEYCOMBE, 1 982).

3.2 0 THERMO-CALC®

O Thermo-Calc® é um software vinculado a diversos bancos de dados, com o ob-

jetivo de tornar os cálculos termodinâmicos mais rápidos e eficientes, ajudando no pla-

nejamento e redução de experimentos. Isso é possível devido ao método CALPHAD,

que inicialmente era a abreviação de "Ca/cu/af/on of Phase D/agrams" e depois foi

expand\do para " Coupling of Phase Diagrams and Thermochemistry". Es\e mé\oào

utiliza todas as informações experimentais e teóricas sobre um sistema, aplicando so-

J 10 Z0 30

' ml; '.ll.Õtl;'.;;tl;.' Ü-.:;«,Li'' ' '''''''''''''-'];Z''''''''' '''''''''''''''''''''''''"""''""'']
/ 1l / l

/ '*'.«'::'
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Figura 2 - Diagrama de fases metaestável ferro-carbono (MASSALSKI, 1996)

bre elas um modelo matemático, cujos parâmetros são otimizados de acordo com a

minimização da energia livre de Gibbs. Os modelos matemáticos são desenvolvidos

considerando as propriedades químicas e físicas do sistema, como a cristalografia,

tipo de ligação e propriedades magnéticas.

O software trabalha com módulos, que realizam cálculos diferentes e mostram

os resultados de diversas formas, sendo o principal deles o Sysfem-C,/f///f/es ou SYS.

Para este trabalho, foi utilizado o módulo POLI que mediante dados de temperatura-

pressão-composição realiza cáculos de diagramas de equilíbrio e de fases, em parti-

cular os multicomponentes (Thermo-Calc Software AB, 2003).

3.3 TEMPERATURAS CRÍTICAS DEAÇOS

Le Chatelier foi o primeiro a atribuir a letra "A" para as temperaturas críticas de

transformação, devido à palavra ,4rréf, que representa a parada na temperatura du-

rante a transformação de fase (SILVAR MEI, 201 0). Para exemplificar essas tempe-

raturas críticas em aços, são mostrados a seguir gráficos obtidos por simulações de

termodinâmica computacional utilizando o software Thermo-Calc®, correspondentes
a uma liga Fe-1 %Mn-C.

A Figura 3 corresponde à isopleta do carbono para o teor de 1% em massa de Mn.



As linhas tracejadas na vertical representam três ligas com teores de carbono também

fixos. A primeira linha vertical tracejada da Figura 3 representa um aço hipoeutetóide e

o gráfico da fração molar das fases em função da temperatura é apresentado na Figura

4a. Um aço com essa composição, mediante aquecimento, mantém as fases cl e FenC

estáveis até a temperatura AI ser atingida, na qual a fase oc começa a se decompor em

'y. No gráfico da Figura 4a, essa temperatura pode ser notada pela primeira mudança

de inclinação da curva da austenita. O aço permanece no campo trifásico (ct + '

+ Fe3C) até a temperatura AI' ser atingida, quando toda a fase Fe3C é consumida.
Para temperaturas crescentes, a fase cl se transforma em ' até a temperatura A3 ser

atingida, na qual tem-se 1 00% de fase '.
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Figura 3 - Diagrama de fases Fe-C para aço 1% Mn, em massa

Um aço eutetóide, correspondente à segunda linha vertical da Figura 3 e ao grá-

fico da Figura 4b, segue o mesmo raciocínio. A diferença é que não há um campo
trifásico e, portanto, não há mais uma temperatura AI ' definida.

Já para um aço hipereutetóide, terceira linha vertical na Figura 3 e gráfico da

Figura 4c, a diferença é que o segundo campo bifásico é constituído por ' e Fe3C, até
atingir o ponto em que toda a fase Fe3C se transforma em '. Algumas referências,

como Digges, Rosenberg e Geil (1960), fazem distinção para a temperatura A3 de
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(c)

aços hipereutetóides, chamando-a de Acm, devido à diferença de campos bifásicos.

No presente trabalho, ambas serão chamadas de A3, por corresponderem à menor
temperatura em que a fração de austenita é 1 00%.

Em resumo, pode-se dizer que a temperatura AI corresponde à máxima tempe-

ratura em que a fração de austenita é zero, enquanto a A3 é a mínima temperatura

cuja fração de austenita é 1 00% e AI ' é o limite superior do campo intercrítico de três

;f--»,
ili Fe3C (comerúib)

Al: :A3

 

"':

[
ili y(austerita)

l '':''"«»«"»'

 



fases (HONEYCOMBE, 1982).

E possível ainda diferenciar a temperatura crítica no resfriamento da de aqueci-

mento, utilizando respectivamente as letras "r" e "e". Sob aquecimento e resfriamento

lentos (ou seja, sob condições de equilíbrio) elas devem ser iguais. Na prática, as ta-

xas de resfriamento ou aquecimento aplicadas deslocam as temperaturas Ael de Arl

e Ae3 de Ar3 do equilíbrio, devido às cinéticas de formação e dissolução das fases. A

faixa de temperatura entre AI e A3 é chamada de intervalo crítico ou de transformação

(DIGGES; ROSENBERG; GEIL, 1960).
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3.4 TRAmMENTO TÉRMICO DE AÇOS

A importância da determinação das temperaturas críticas está diretamente rela-

cionada à aplicação de tratamentos térmicos a aços. A obtenção das propriedades

ideais de um aço está relacionada tanto com sua composição química quanto com

os processos de tratamento térmico aos quais ele é submetido (TOTTEN, 2006).
Tratamentos térmicos podem ser utilizados para aumentar ou diminuir a ductilidade,

dureza, tensão de escoamento ou tenacidade, otimizando essas propriedades para a

finalidade do material (SILVA; MEI, 201 0).

A austenitização é a etapa que precede um tratamento térmico e consiste em

aquecer o aço a uma temperatura em que haja formação da austenita. Esta pode ser

parcial, quando se encontra na faixa de transformação (ou seja, entre as temperatu-

ras AI e A3), ou total, quando está acima do intervalo de transformação (acima da

temperatura A3) (ASM International, 1 991).

A partir do aço na forma de austenita, é possível fazer o recozimento, ou seja,
o resfriamento lento para reduzir tensões, diminuir dureza, melhorar a usinabilidade

ou ajustar o tamanho do grão, reduzindo assim influências de tratamentos térmicos

ou mecânicos anteriores. Para aços hipoeutetóides a temperatura é de aproximada-

mente 50'C acima de A3, enquanto para hipereutetóides é de 50'C acima de AI,

não podendo ultrapassar A3 pois em um resfriamento posterior formaria cementita

nos contornos de grão da austenita, fragilizando a peça tratada. Quando se deseja

uma estrutura perlítica, prefere-se temperaturas de austenitização mais altas, e mais

baixas para estrutura esferoidizada. Para ambos os casos, quanto mais próxima de

AI for a temperatura de transformação da austenita, mais grosseira será a estrutura

Outro tipo de tratamento térmico é a normalização, que após austenitização res-

fria lentamente o aço ao ar parado ou agitado, sendo recomendada para homoge-

neizar a estrutura após forjamento ou antes de outros processos, como têmpera ou



revenimento. Em aços hipoeutetóides, causa um espaçamento entre as lamelas da
perlita, tornando-a mais fina. A dureza e a resistência mecânica ficam mais elevadas

e a dutilidade mais baixa. Para hipereutetóides, distribui-se melhor os carbonetos, pois

a temperatura de austenitização ocorre acima de A3.

Um terceiro tipo de processo muito importante é a têmpera, que consiste em

resfriar o aço austenitizado rapidamente a fim de obter a estrutura metaestável mar-

tensítica. O teor de carbono aumenta a dureza da martensita e diminui a temperatura

necessária para que o processo ocorra. Essa temperatura depende não só da compo-

sição do aço, mas também da taxa de resfriamento, e é chamada de Ms. Por depender

de fatores cinéticos, essa temperatura crítica não será o foco do presente trabalho.

A formação de martensita aumenta a dureza do aço, entretanto o torna mais

frágil. Para melhorar a resistência mecânica e tenacidade do material temperado,

realiza-se o revenimento da martensita, aquecendo o aço até temperatura inferior à

de austenitização, mantendo-a até que as propriedades desejadas sejam alcançadas

(SILVAR MEI, 2010). Como a martensita é uma solução supersaturada de carbono,

durante o revenimento o ferro o rejeita na forma de carbonetos em uma matriz de ferro

ct (HONEYCOMBE, 1982).
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3.5 EFEITO DOS ELEMENTOS DE LIGA NAS TEMPERATURAS CRÍTICAS E TRA

TAMENTOTERMICO

Os elementos de liga são adicionados ao aço para modificar as fases ou cons-
tituintes em equilíbrio, bem como alterar a maneira como essas fases se formam

(SALVA; ME1, 20101.

Os elementos de liga podem ser classificados de acordo com sua influência no

campo austenítico, que por sua vez está relacionada à estrutura eletrânica dos ele-
mentos. São eles:

Classe 1: elementos de domínio ' aberto(Figura 5a), podendo até mesmo elimi-

nar completamente a fase cl em concentrações suficientemente altas. Assim, as

transformações ' --> oc ocorrem a temperaturas menores, ou seja, A3 diminui e

pode haver casos em que não há a temperatura AI . Fazem parte desse grupo:
Níquel, Manganês, Cobalto, Rutênio, Ródio, Paládio, C)smio, Irídio e Platina.

Classe 2: elementos de domínio ' expandido (Figura 5b) até a formação de um

composto de ferro. Essa expansão é responsável por formar solução sólida homo-

gênea, sendo muito importante para o tratamento térmico dos aços. Pertencem a
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esse grupo o Carbono e o Nitrogênio, que diminuem o valor de A3

Classe 3: domínio ' fechado (Figura 5c), elementos que favorecem a expansão

do domínio a, que circunda o campo austenítico, formando uma região chamada

de ilha gama ou '-loop. Estes aumentam AI e pode haver casos em que A3 não

existe. Essas ligas não podem passar por tratamento térmico de arrefecimento

através da transformação ' --> cl. Fazem parte desse grupo: Silício, Alumínio,

Berílio, Fósforo e elementos fortemente formadores de carboneto, como Titânio,

Vanádio, Molibdênio e Cromo.

Classe 4: domínio ' contraído mas há formação de compostos de ferro (Figura

5d). Os elementos Boro, Enxofre, Tântalo, Nióbio, Zircõnio estão nessa categoria

(HONEYCOMBE, 1982)(SALVA; ME1, 2010).
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Figura 5 - Classificação dos domínios y sob influência dos elementos de liga: a) abertos b) expandido

c) fechados d) contraído.(HONEYCOMBE, 1982)
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3.6 DETERMINAÇÃO DAS TEMPERATURAS CRITICAS

São reportadas na literatura diversas formas de determinação de temperaturas
críticas de aços, sejam de forma experimental ou computacional.

Transformações de fase do aço causam contração ou expansão do material, de-

vido às diferentes densidades das fases que se formam ou dissolvem. A dilatometria

é um método de determinação experimental de detecção de transformações de fa-

ses através da cometa de sinais de mudança nas dimensões do corpo de prova bem

como sua temperatura. As temperaturas críticas de transformação podem então ser

determinadas graficamente pelas inflexões nas curvas da dilatação em função da tem-

peratura, como as mostradas na Figura 6. Na Figura 6, na nomenclatura utilizada pelo

autor, a temperatura AI equivale a Aclp, AI ' corresponde a Aclk, e a temperatura A3

é a temperatura AcS ou Acm. Apesar de preciso, o equipamento tem custo elevado e

necessita de pessoas capacitadas para opera-lo.

Figura 6 - Determinação gráfica das temperaturas críticas em aço (a) hipoeutetóide, (b) eutetóide e (c)

hipoeutetóide, a partir de dados do dilatõmetro (PAWLOWSKI, 201 2)

Outro método de determinar as temperaturas críticas de transformação é através

de softwares de termodinâmica computacional, como o Thermo-Calc®, que calculam

as variáveis de estado (e.g., fração de fases, composição das fases) baseados nos

princípios termodinâmicos (minimização da energia livre de Gibbs). Estes softwares

acessam bases de dados termodinâmicos que fornecem informações dos parâmetros

de interação dos elementos químicos para determinadas fases, que então são utiliza-

dos para o cálculo da energia livre de Gibbs. A precisão dos cálculos computacionais

é precisa e tem sido constantemente avaliada na literatura. Entretanto, tanto software

quanto o acesso aos bancos de dados é normalmente pago, e requer-se certo apren-

dizado para sua manipulação.

Uma terceira maneira é a utilização de equações empíricas que se baseiam na



concentração em massa dos elementos presentes no aço. A elaboração dessas equa-

ções envolve um método de regressão múltipla. Gorni(2012) compilou diversas fór-

mulas para o cálculo das temperaturas de transformação para austenita AI e A3. Abai-

xos são mostradas duas equações para o cálculo das temperaturas AI e A3, conforme

propostas por Andrews (1 965):
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AI = 723-- 16.9NI + 29.ISI + 6.38W-- l0.7Mn + 1 6.9Cr + 290As

A3 = 910 -- 203v/C + 44.7SI -- 15.2NI + 31 .5Mo + 1 04V + 13.IW -- 30.0Mn

+ ll .0Cr + 20.0Cu -- 700P -- 400AI -- 1 20As -- 400TI

(1 )

(2)

E importante ressaltar que essas equações são válidas apenas para teores de
carbono abaixo de 0.6%(ANDREWS, 1965).

3.7 APRENDIZADO DE MÁQUINA E A DETERMINAÇÃO DE TEMPERATURAS CRí
TICAS

Dada a complexidade e o custo de desenvolvimento de um novo material, estudos

recentes têm se voltado para a tecnologia como primeira forma de avaliar hipóteses
(BELISLE et al., 2015). Uma vez que muitas variáveis estão envolvidas na determi-

nação de uma propriedade, tornaram-se populares algoritmos capazes de aprender

com alguma experiência vinda de um conjunto de tarefas, cujo desempenho melhora

quanto maior sua experiência, também chamados de maca/ne /Caro/r7g, ou aprendi-

zado de máquina.

Esses algoritmos podem ser classificados entre supervisionados e não super-

visionados. Ele é dito supervisionado quando recebe um banco de dados com as

respostas certas e a partir delas prevê um valor para dada situação (regressão) ou

faz uma classificação binária. Já o algoritmo não supervisionado não sabe quais são

as respostas certasl ele é alimentado com dados para que se encontre um padrão
(clusterização) '

No campo da engenharia de materiais, os algoritmos mais utilizados são os su-

pervisionados, uma vez que pode-se reunir dados teóricos ou experimentais e a partir

deles fazer a predição de propriedades. Diversas funções podem ser utilizadas para

esse fim, cada uma com certa eficiência, e segundo o teorema "No Free Lunch" de

Wolpert e Macready apud Bélisle et al. (201 5), não existe um algoritmo perfeito.

l Informações extraídas das vídeo aulas do curso de Machine Learning ministrado por Andrew Ng

disponível em <https ://pt.coursera.org/learn/mqchlne-learning>



Dentre os métodos supervisionados, destacam-se os algoritmos que foram explo-
rados nesse trabalho.
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3.7.1 Modelos de regressão

Uma das formas mais simples de aprendizado de máquina são modelos de re-

gressão. Uma análise de regressão procura descrever as relações entre uma variável

dependente (também chamada de variável de resposta) e variáveis independentes.

Em particular, modelos de regressão linear são aqueles em que a relação entre

as variáveis dependente e independentes pode ser descrita por uma relação linear do

tiPO

y = 13o +l3lxl + P2x2 +

= 13o + .> :13ixi + €

em que y representa a variável dependente e xj e lij correspondem às variáveis de-
pendentes e aos coeficientes de regressão.

O modelo de regressão também pode ser descrito por uma equação polinomial.

A equação 4 abaixo representa um modelo de regressão em que a relação entre

as variáveis é descrita por um polinõmio de segunda ordem. Esse tipo de modelo de

regressão é também chamado de modelo de superfície de reposta de segunda ordem.

k

l

+l3kxk + €

(3)

y + >ll: Pixi + >1: }: 13ijxixl + € (4)

Note-se que o modelo descrito pela equação 4 também se trata de um modelo

de regressão linear, uma vez que os termos de segunda ordem podem ser redefinidos

como novas variáveis independentes de primeira ordem. De forma a ilustrar melhor

esta situação, tome-se como exemplo o seguinte modelo de segunda ordem com duas

variáveis xl e x2:

k k k

l l J

y = 13o + l31xl + l32x2 + l3llx12 + l3p2xp2 + B12xl x2 + e(5)

Definindo x3 = x12, x4 = x22, x5 = xlx2, l33 = B12, l34 = 1322 e l35 - l31 l32, então a

equação 5 setorna:

y ISo + PI xl + l3Px2 + l33xa + B4x4 + l35x5 + € (6)



que possui a mesma forma que a equação 3 do modelo de regressão linear.

Os coeficientes de regressões multivariáveis geralmente são estimados pelo mé-

todo dos mínimos quadrados, que consiste em minimizar a soma dos quadrados dos

desvios, representada pela equação 7 a seguir. Os mínimos são encontrados nos

pontos em que a derivada em relação a cada B é zero (MONTGOMERY. 201 8).
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L -l3o-E: l3j*ij)2 (7)

Uma vez determinado o modelo de regressão, certas métricas podem ser aplica-

das a fim de se averiguar sua qualidade de predição. A primeira e mais simples de
todas é o Erro Quadrático Médio (MSE, sigla em inglês), que calcula a média das di-

ferenças entre o valor esperado (y) e o valor predito (yP) elevadas ao quadrado, como
mostra a equação 8. Quanto maior seu valor, menos preciso é o modelo.

k k

l l

MSE (n-ypi)2 (8)

A vantagem de utilizar essa métrica é identificar com facilidade valores preditos

inesperados. Por outro lado, o fato de o erro estar ao quadrado pode subestimar ou

superestimar a previsibilidade do modelo, principalmente se o banco de dados contiver
ruídos.

A segunda métrica é o Coeficiente de Determinação, ou R2. Está relacionado

com o MSE, porém seus valores variam de --oo a 1 , o que simplifica sua comparação.

Um valor negativo significa que o modelo é pior do que a previsão da média, enquanto

um valor próximo de um significa que o erro está próximo de zero. O cálculo é feito

a partir do MSE do modelo, descrito na equação 8, e do MSE da previsão da média,

mostrado na equação 9 abaixo, onde p, é a média dos valores esperados. Em resumo,

o R2 mede o quão bom o modelo é em relação ao modelo da média(DRAKOS, 2018).

k

MSE (yi-F)2 (9)

Existem outras métricas para avaliação das predições, mas no presente trabalho

serão utilizadas apenas as citadas acima.

k

l
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3.7.2 Rede Neural Artificial

Um segundo método é a rede neural. Inspirada no cérebro humano, baseia-se

em associações para fazer previsões, sendo muito utilizada para reconhecimento de

padrões. E indicada para funções não lineares e pode identificar relações comple-

xas entre variáveis independentes. A desvantagem é o maior tempo computacional

necessário(BELISLE et al., 2015).

A rede neural artificial é um conjunto de neurónios de software organizados em

camadas, conectados de forma que possibilita a comunicação entre eles. Como mos-

tra a Figura 7, ela tem uma camada de entrada, uma ou mais camadas intermediárias
e outra de saída.

Camada
de saída

C

Camada
de entrada

Camada
intermediária

Mn AI

X si
Cr

-AI' '?

A3

Ni

tanh

Figura 7 - Arquitetura da rede neural

Para o exemplo da Figura 7, a primeira camada recebe uma entrada X de cinco

dados n vezes, sendo n o tamanho do banco de dados utilizado no treinamento. Os

neurónios da camada intermediária recebem o vetor X com as 5 entradas para calcular

o valor predito Y. Para cada neurónio existem os vetores de peso e os vieses (ou b/as),

que a princípio são randõmicos. O vetor X é multiplicado pelo vetor de peso e depois

adicionado ao viés, como mostra a Equação 1 0. Como os valores dos pesos e vieses

são aleatórios, o valor da saída inicialmente é bem diferente do esperado. A cada

iteração, os pesos são alterados até atingir um resultado satisfatório, etapa chamada

de treinamento da rede neural(BHADESHIA, 1999). Uma função de perda calcula o

quão longe o modelo está da solução ideal e seu valor diminui conforme a precisão
aumenta.
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z ; b + wl xl + w2x2 + w3x3 + + WnXn (10)

Como mostra a Figura 8, o resultado de cada iteração passa por uma função de

ativação e, de acordo com o resultado, se define a próxima conexão. Entre as funções

mais utilizadas, estão a sigmóide, que por gerar valores entre 0 e l é utilizada em

algoritmos de classificação, a ReLU, sigla para "f?ecf//led Z./cear C/n/f", e a tangente
hiperbólica, descrita na equação ll(SKALSKI, 2017). Essa última foi a escolhida no

presente trabalho por ser usada anteriormente por Capdevila et al. (2004) e Gavard et

al. (1996).

x+ó

.f\

y

A.

y

Figura 8 - Operações em um único neurónio (SKALSKI, 2017)

tanh(x) - i-:;:R ' l (1 1)

O processo de aprendizado da rede neural envolve a otimização dos pesos e

vieses para minimizar o valor da função perda, o que é calculado a partir do método

de gradiente descendente, ou seja, a minimização das derivadas da função perda

em relação a cada parâmetro da rede. O algoritmo de retropropagação compara os

valores obtidos com os esperados e reajusta os parâmetros da rede.

Esse ajuste é controlado pela taxa de aprendizado, uma variável de extrema im-

portância, posto que um valor muito baixo torna a convergência muito lenta e um valor

muito alto pode não convergir(SKALSKI, 2017).

As métricas de avaliação da predição são as mesmas utilizadas na regressão
linear, somadas à avaliação do valor final da função perda.
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3.7.3 Preparação dos Dados

Sabendo como funcionam os modelos de aprendizado de máquina, é importante

realizar um bom preparo dos dados, dada sua influência na previsibilidade do modelo.

Uma das maiores preocupações em relação aos algoritmos de aprendizado de

máquina é o over#f. Esse termo é utilizado quando um modelo é muito bem treinado

para um certo conjunto de dados, porém tem uma previsibilidade ruim para dados

novos. Esse problema é mais provável de ocorrer quando se elabora um modelo mais

complexo do que o necessário. Por outro lado, o termo under#f é usado quando o

modelo não se ajusta aos dados de treinamento e também não pode ser usado para

prever novos dados.

Assim sendo, é importante dividir o banco de dados disponível entre dados de

treino, com o qual o modelo aprende, e dados de teste, para avaliar a predição do mo-

delo para novos dados. A proporção do tamanho dos conjuntos de dados depende do

tamanho do banco original. A proporção 80% treino e 20% teste é considerada segura

por estudos mais recentes(BRONSHTEIN, 2017), embora o trabalho de Gavard et al.

(1 996) utilize 50%.

Outra forma de preparação é a padronização dos dados, que consiste em deixá-

los entre -l e l. Isso pode serfeito pela normalização, que utiliza a média(F) e o desvio

padrão (a), como mosta a equação 12, ou pela padronização M/r7Max, utilizando os

valores máximos e mínimos, como mostra a equação 1 3.

: : 4U
a

. X-- min(X) ,. .*
z : iiiã;(X}':iiiiii(B' l ' o/

A padronização é importante para tornar o treinamento menos sensível à mag-

nitude dos dados, o que pode influenciar na convergência do modelo (RASCHKA,
2014).
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4 METODOLOGIA

4.1 0BANCO DE DADOS

4.1.1 Escolha das variáveis

A primeira etapa para elaboração de um algoritmo de aprendizado de máquina

é a construção do banco de dados utilizado em seu treinamento. Para este trabalho,

utilizou-se dados extraídos do software Thermo-Calc®, devido à sua acessibilidade.

Inicialmente, discutiu-se os elementos de liga e suas respectivas faixas de com-

posição química nos aços estudados. Foram considerados apenas os mais comuns

aços de engenharia, cujas composições foram consultados em um handbook SAE

(SAE Society of Automotive Engineers, 1983). Não foram consideradas as compo-

sições relativas aos aços inoxidáveis. A Tabela l mostra as faixas de composições

escolhidas para criação do banco de dados de temperaturas críticas.

Tabela l Faixas de composição química dos elementos de liga

Elemento de liga
Carbono

Manganês

Silício

Cromo

Níquel

% mínima

0

x 10'6
x 10'6
x 10--6

x 10--6

% máxima

1,5

3,0

3,0

3,0

3,0

Também discutiu-se a faixa de temperatura a ser estudada. Para isso, analisou-

se os diagramas binários para cada elemento de liga, que podem ser encontrados no

Anexo A, e observou-se suas temperaturas críticas. Considerando a temperatura em

que pode ser observada austenita, utilizou-se o intervalo de 673 a 1 473K.

Definidas as faixas de composição química e temperatura, foram definidos os

níveis para cada elemento, ou seja, quantas variações (ou passos) cada elemento

tem. O valor do passo é dado pela equação a seguir:

passo ; =.T (14)

Assim, os níveis e passos utilizados para cada elemento são dados na Tabela 2.

Já para a temperatura, estabeleceu-se um passo de 1 0K. A partir da combinação

desses valores de composição, um script faz a chamada do Thermo-Calc®. Dessa

A
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Tabela 2 - Níveis e passos para cada elemento de liga

Elemento de liga
Carbono

Manganês

Silício

Cromo

Níquel

Níveis

1 1

5

5

5

5

Valordo passo
0,15

0,75

0,75

0,75

0,75

forma, para dada composição química, são retomadas as porcentagens de cada fase

(ferrita, austenita e cementita) para cada temperatura dentro da faixa estabelecida. O

resultado da chamada do Thermo-Calc® é salvo em um arquivo de texto de extensão

DA:T'". No total, foram gerados 6875 arquivos.

4.1.2 Extração de temperaturas críticas

Para cada arquivo gerado pela chamada do Thermo-Calca, as temperaturas crí-

ticas foram calculadas por meio de outro script. Este faz a leitura do arquivo .DAT,

que contém as porcentagens de cada fase para cada temperatura entre 673 e 1 473K.
variando em 1 0K.

Para determinar a AI , identifica-se a maior temperatura em que a porcentagem

de austenita é zero, enquanto que para a temperatura A3, identifica-se a menor tem-

peratura em que a porcentagem de austenita é 1 00%. Também identificou-se a tem-

peratura crítica intermediária, AI ', e se o aço da respectiva simulação é hipo ou hi-

pereutetóide. Para isso, comparou-se a temperatura em que a porcentagem de ferrita

é zero (Tferr) com a que a porcentagem de cementita é zero (Tcem). Caso Tferr seja

maior que Tcem, AI ' é igual a Tcem e o aço é hipoeutetóidel caso contrário, AI ' é igual

a Tferr e o aço é hipereutetóide. Uma terceira situação é a aquela em que não há

cementita para a composição dada e assim não há campo trifásico e AI ' seria igual a

Os dados do nome do arquivo, o número da macro que fez sua chamada, compo-

sição química, temperaturas críticas e classificação em hipo ou hiper eutetóide foram

salvos em um arquivo CSV.

AI
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4.1 .3 Avaliação do banco de dados

Foram realizados testes para averiguar a qualidade dos dados extraídos do Thermo
Calc(B).

Para avaliar a coerência, foi elaborado um script que plota simultaneamente o

gráfico da porcentagem de austenita em função da temperatura, comparando dados
da tabela de resultado com dados de uma única chamada do Thermo-Calc®. Dessa

forma, foi possível testar resultados pontuais considerados inconsistentes.

Outro teste realizado foi a verificação da existência das fases ferrita, austenita e

cementita, para averiguar quais composições poderiam ser problemáticas para deter-
minar as temperaturas críticas.

Uma importante verificação da base de dados como um todo foi a comparação

com os resultados das equações empíricas de Andrews. Para cada composição quí-

mica do banco de dados, calculou-se as temperaturas críticas AI e A3 pelas equações
empíricas. A partir disso, gerou-se um gráfico de temperatura crítica calculada versus

temperatura crítica gerada pelo Thermo-Calc®.

A fim de avaliar o efeito de cada elemento na temperatura crítica A3, foram traça-

das isopletas com a composição de carbono como variável livre e diferentes composi-
ções de cada elemento.

4.2 REGRESSÃOLINEAR

Analisou-se a predição das temperaturas AI , AI ' e A3 atráves de algoritmos de
regressão linear multivariável.

Primeiramente, o banco de dados gerado conforme a secção 4.1 foi manipulado,

transformando as composições para porcentagem em peso e as temperaturas para
graus Celsius, além de remover os dados cujas temperaturas críticas não existissem.

A fim de avaliar o efeito dos termos ao quadrado e da interdependência entre ele-

mentos químicos no valor das temperaturas críticas, foram criados novos parâmetros,

totalizando os seguintes: C, C2, CMn, CSI, CCr, CNI, Mn, Mn2, MnSI, MnCr, MnNI. Si.

Si2, SiCr, SiNI, Cr, Cr2, CrNI, Ni, Ni2

Em seguida, o banco de dados foi separado entre dados de treino e dados de

teste para o algoritmo. Utilizou-se a proporção 80% treino e 20% teste, selecionando

dados com um algoritmo pseudoaleatório, ou seja, para uma mesma semente são
selecionados os mesmos dados.

Na sequência, os dados de treino foram utilizados para gerar modelos de regres-



são linear multivariável, utilizando o Sc/k/f-/Caro. Essa biblioteca do Pyfhon contém

funções eficientes de aprendizado de máquina, incluindo o módulo //nea/.moda/, no

qual se espera que o valor alvo seja uma combinação linear dos dados de entrada.

Para cada temperatura crítica, foi gerado um modelo para composições hipoeu-

tetóides, um para hipereutetóides e um para todas as composições, totalizando nove

modelos. Para cada modelo obteve-se os coeficientes de regressão de cada variá-

vel independente e calculou-se o coeficiente de determinação (R2) da predição do
modelo.

Para cada modelo, foram plotados gráficos de valores preditos versus valores

esperados para o conjunto de dados de teste, além de isopletas de A3 com os dados

de treino e de teste, para posterior comparação com as isopletas da rede neural. Para

a isopleta do carbono, utilizou-se tanto o modelo hipoeutetóide quanto hipereutetóide

para prever o valor de A3 para os demais elementos no nível zero. Já para as demais

isopletas, utilizou-se apenas o modelo hipoeutetóide, pois para nível zero de carbono

não há aços hipereutetóides.

Visto que os valores de R2 foram muito satisfatórios, realizou-se um novo teste, a

fim de verificar a possibilidade de over#f. Para isso, gerou-se um novo banco de dados

de teste, de tamanho equivalente a 20% ao do banco original, utilizando o algoritmo

band do /Vumpy, que retorna números aleatórios distribuídos uniformemente de 0 a
1 . Em seguida esses números foram multiplicados pelas composições máximas do

elemento químico correspondente, a fim de se obter ligas dentro das faixas de com-

posição estudadas. Por fim, foram rodados os scripts para determinar a temperatura

dada pelo Thermo-Calc®, descritos na secção 4.1 . Novos cálculos de R2 foram feitos

e comparados com os originais.

32

4.3 REDE NEURAL

Dado que a temperatura A3 é a mais complexa de se determinar, devido à inver-

são da curva no ponto eutetóide, para essa temperatura crítica foi elaborada uma rede

neural, de arquitetura semelhante à mostrada na Figura 7

Para isso, houve o mesmo tratamento de dados descrito na secção 4.2, trans-

formando as composições para porcentagem em peso, as temperaturas para graus

Celsius, e removendo os dados cujas temperaturas críticas não existissem. Também

foi feita a mesma separação entre dados de treino e teste, utilizando a mesma propor-

ção de 80/20%, respectivamente.

Além desses procedimentos, a rede neural exige que os dados sejam normaliza-



dos para que haja melhor convergência, uma vez que a função de ativação escolhida

para o modelo foi a de tangente hiperbólica. Foi utilizado o M/n/Wax Sca/er, função

do módulo Sc/k/f-/earr7 do Pylhon, que reduz o intervalo dos dados para que estejam
entre 0 e l.

Para construção da rede neural, foi utilizado o Keras, uma API de alto nível escrita

em F)Whon e cujo óackend pode ser rodado em nensorF/ow, C/V7K ou Theano. Para

esse caso, foi utilizado o ãensorF/ow. Essa biblioteca tem como maior vantagem a

agilidade para criar modelos complexos, facilitando a elaboração de testes (SKALSKI,

Como valor de saída foi estabelecido A3, enquanto as porcentagens em peso de

C, Mn, Si, Cr, Ni foram definidas como valores de entrada. Foram variados o número

de neurónios na camada intermediária, de l a 12, bem como a taxa de aprendizado

(ou /Caro/ng rate) de 0.1, 0.01 e 0.001 . Foram plotados gráficos de Erro quadrático
médio versus número de neurónios na camada intermediária, com o intuito de estipular

um ponto ótimo desses parâmetros, como realizado no trabalho de Capdevila et al.

(2004). Para um mesmo número de neurónios, foram testados 5 modelos, uma vez

que os pesos e vieses iniciais são aleatórios e podem influenciar no resultado final.

Definida a taxa de aprendizado que apresentava melhor estabilidade do erro qua-

drático médio, avaliou-se o efeito do número de neurónios na camada interna na fun-

ção perda e nos valores preditos. Foram plotados gráficos de função perda versus
número de iterações, bem como de valores preditos versus valores esperados, para

número de neurónios na camada intermediária de la 12.

Estabelecendo o ponto ótimo de número de neurónios, foram plotadas isopletas

comparando os dados de treino com de teste, foram calculados o coeficiente de de-

terminação (R2) e o erro quadrático médio (MSE) da predição do modelo.
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2017)

4.4 COMFURAÇÃO DOS MODELOS

Para se comparar a assertividade dos modelos, foram comparados os coeficien-

tes de determinação de regressão linear, rede neural e Equação Empírica de Andrews

para predição da temperatura A3.
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5 RESUl:LADOS E DISCUSSÃO

5.1 0 BANCO DE DADOS

O resultado da variação de composição química para aços carbono gerou um

total de 6875 combinações e, para cada, fez-se a chamada do Thermo-Calc® que

retorna a porcentagem de cada fase para temperaturas de 673 a 1 473K, variando de

1 0K. Para cada composição, os dados são salvos em um arquivo .DAr.

Inicialmente, sete macros faziam a chamada do Thermo-Calca com 1 000 compo-

sições cada. Isso trouxe resultados muito inconsistentes, como valores em branco ou

ou incoerentes com a literatura, e podem estar relacionados à sobrecarga de memória

do computador. Notou-se que, quanto menos chamadas cada macro fazia, menor o

número de erros nos resultados e, assim, chegou-se ao número de 69 macros com

1 00 chamadas cada.

Em seguida, para cada arquivo, extraiu-se as temperaturas críticas AI , AI ' e A3.

A Figura 9 ilustra a lógica dessa extração. A temperatura AI ' é representada pela mu-

dança de inclinação na curva da porcentagem de austenita. Para aços hipoeutetóides,

essa temperatura corresponde ao ponto em que a porcentagem de cementita é zero,

como mostra a Figura 9a. Já para hipereutetóides, ao ponto em que a porcentagem

de ferrita é zero, como na Figura 9b. Enquanto isso, para aços em que a porcentagem

de cementita é sempre zero, considera-se que a temperatura AI ' é igual à AI (vide

Figura 9cl.

E importante destacar que nem sempre um aço terá as três temperaturas críti-

cas. Elementos muito alfagênicos podem não ter A3, como no caso de um ' loop, e

gamagênlcos podem não ter AI , por terem austenita estável à temperatura ambiente.

Mesmo considerando que algumas temperaturas críticas podem não existir para

certas composições, ainda não se sabe as causas dos erros que ocorreram nessa

extração. Por exemplo, algumas composições com baixo carbono ficaram com valores

em branco, enquanto outras tiveram valores de temperatura crítica muito acima do

esperado, embora os gráficos plotados para sua respectiva composição estivessem

dentro do esperado. Assim, foi feito um script que faz essa correção, fazendo apenas

uma chamada do Thermo-Calca por vez

Foi realizada uma comparação dos valores de temperatura crítica com a equação

empírica de Andrews, plotando o gráfico da Figura 1 0. A linha em azul representa os

valores esperados (Tempirical ' Tdatabase).

Nota-se que, para as temperaturas A3, existe uma correlação maior com os va-
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AI AI

a (ferrita)
y(austenita)

Fase (cementita)

a (ferrita)
y(austenita)
Fe3C (comentita)
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Temperatura ('C)

(a)

1200 400 600 800 1000
Temperatura ('C)

(b)

1200

« (ferrita)

y'(austenita)

400 600 800 1000 1200
Temperatura ('C)

Figura 9 - Exemplos de extração de temperaturas críticas para a) liga hipoeutetóide
tóide e c) liga hipoeutetóide sem cementita

(c)

b)liga hipereute

lores calculados pela equação empírica, enquanto para AI existe uma divergência
maior. Isso pode estar relacionado com o fato de a equação de Andrews não ter mem-

bros interdependentes entre os elementos químicos, o que na prática não se aplica.

Para averiguar essa interdependência, plotou-se as isopletas de temperatura para

cada elemento, variando a composição de carbono. Para cada elemento de liga,

plotou-se cinco curvas, correspondentes aos cinco níveis de composição escolhidos,
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Figura 1 0 - Gráfico de temperatura crítica calculada pela equação empírica de Andrews e temperatura
crítica do banco de dados

mostradas na Figura l l .

Para o manganês e níquel, nota-se que a baixas concentrações de carbono a

concentração do elemento de liga tem muita interferência no valor das temperaturas

de transformação. A partir de 0,8% C, as temperaturas são mais próximas para todos

os níveis. Uma possível explicação é que os três elementos são gamagênicos.

Já para elementos alfagênicos, como o cromo, a relação se inverte. Para baixas

concentrações de carbono, os valores de temperatura ficam próximos, e a partir de

0,4% de carbono a concentração do cromo já contribui para sua divergência.

Um caso intermediário é o do silício, que apesar de alfagênico, tem influência na

temperatura tanto a baixas quanto a mais altas concentrações de carbono, embora a

influência a baixas concentrações seja maior.
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5.2 REGRESSAOLINEAR

Após o tratamento dos dados, pontos cuja temperatura crítica correspondente não

existisse foram eliminados e os dados foram separados entre hipo e hipereutetóide. A

Tabela 3 mostra o tamanho do banco de dados para cada condição.

Tabela 3 - Tamanho dos conjuntos de dados usados para regressão linear

AI AI' A3

Hipoeutetóide 1151 1643 2303

Hipereutetóide 3308 4339 4542

Total 4459 5982 6845

Os valores de R2 para os nove modelos são mostrados na Tabela 4 a seguir.

Nota-se que o conjunto de dados para determinar a temperatura AI é o menor.
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Tabela 4 - Valores de R2 para regressão linear

AI AI' A3

Hipoeutetóide 0.8663 0.9743 0.9607

Hipereutetóide 0.9817 0.9934 0.9971

Todos os dados 0.9425 0.9748 0.8774

Isso ocorre pois três dos cinco elementos estudados são gamagênicos, reduzindo a

probabilidade de existir AI . A quantidade reduzida de dados teve efeito no valor de

R2, o menos satisfatório dos modelos, principalmente para os pontos hipoeutetóides.

Os valores de R2 obtidos foram satisfatórios porém muito altos, por isso houve o

cuidado em se verificar a possibilidade de ove/#f, como será mostrado a seguir.

5.2.1 Regressão Linear de AI

A Figura 12 a seguir mostra os gráficos de valores preditos versus esperados para

a temperatura AI .

Nota-se que, mesmo com a quantidade de dados reduzida, esses tiveram um

bom ajuste com a reta y = x. Os problemas estão localizados no extremo inferior,

onde a curva de AI no diagrama binário Fe-C não se assemelha a uma reta. Essa

faixa corresponde às temperaturas mais baixas dos hipoeutetóides, onde há poucos

pontos devido à proximidade do campo ct, no qual AI não existe.

5.2.2 Regressão Linear de AI'

A Figura 13 a seguir mostra os gráficos de valores preditos versus esperados para

a temperatura AI '

A temperatura AI ', assim como AI , é mais difícil de ser determinada na proximi-

dade do campo CE, como é possível notar nas temperaturas mais baixas dos hipoeu-

tetóides. O maior número de dados utilizados para o treino resultou em um melhor

ajuste das curvas.

5.2.3 Regressão Linear de A3

A Figura 14 a seguir mostra os gráficos de valores preditos versus esperados para

a temperatura A3.
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Valor espera do

Figura 1 2 - Valores preditos vs. Valores esperados da regressão linear de AI , para (a) Hipoeutetóides

(b) Hipereutetóides, (c) Todos os valores

(c)

Para essa temperatura crítica, os pontos que menos se ajustaram foram os hi-

poeutetóides. Isso possivelmente ocorre pois a curva correspondente no diagrama
binário Fe-C tem uma inclinação mais variável do que a hipereutetóide. Além disso,

nota-se menor quantidade de pontos a temperaturas altas, ou seja, a baixas concen-

trações de carbono. As predições para composições hipereutetóides tiveram melhor

ajuste, não apenas pelo maior conjunto de dados mas também pela curva correspon-
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Figura 1 3 - Valores preditos vs. Valores esperados da regressão linear de AI ', para (a) Hipoeutetóides
(b) Hipereutetóides, (c) Todos os valores

(c)

dente no diagrama binário Fe-C ter inclinação mais constante.

O modelo que utilizou todo o conjunto de dados não teve um bom ajuste, como

era esperado, devido à inversão da curva no ponto eutetóide do diagrama binário Fe-C
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Figura 14 - Valores preditos vs. Valores esperados da regressão linear de A3, para (a) Hipoeutetóides
(b) Hipereutetóides, (c) Todos os valores

(c)

5.2.4 Comparação com banco de dados aleatórios

Ao todo foram gerados 1 375 dados de teste, que passaram novamente pela predi-

ção para se avaliar os ajustes. As Tabelas 5, 6 e 7 a seguir mostram os novos valores
de RP recalculados para cada modelo.

Os resultados obtidos dos dados aleatórios possibilitou uma comparação de mé-
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Tabela 5 - Valores de R2 para regressão linear de AI com dados aleatórios

Original Aleatório

Hipoeutetóide 0.8663 0.7304

Hipereutetóide 0.9817 0.9806
Todos os dados 0.9425 0.9752

Tabela 6 - Valores de R2 para regressão linear de AI ' com dados aleatórios

Original Aleatório

Hipoeutetóide 0.9743 0.8137

Hipereutetóide 0.9934 0.9941

Todos os dados 0.9748 0.8754

Tabela 7 - Valores de R2 para regressão linear de A3 com dados aleatórios

Original Aleatório

Hipoeutetóide 0.9607 0.9603

Hipereutetóide 0.9971 0.9981

Todos os dados 0.8774 0.9207

tricas, uma vez que não foi encontrado na literatura o que seria um valor satisfatório de

R2 para a predição dessas temperaturas em específico. Nota-se que não houve muita

variação dos valores originais para os aleatórios, entretanto, a hipótese de over#f não

pode ser completamente descartada. E possível que a alta complexidade do modelo,

devido ao grande número de dados de entrada, esteja elevando as métricas.

5.2.5 lsopletas das Regressões Lineares

As predições dos modelos de A3 foram utilizadas para gerar isopletas variando-se

um dos elementos e fixando os demais a nível zero. Na Figura 15 a seguir, a linha azul

corresponde às predições do modelo hipoeutetóide e a vermelha ao hipereutetóide,

enquanto os pontos em "x" são os valores obtidos pelo Thermo-Calc®.

Para o Carbono, a predição é próxima do esperado, principalmente para hipe-

reutetóides. Já para hipoeutetóides, quanto menor a composição de carbono, maior

a diferença entre o predito e o esperado, chegando a 50'C. Como discutido ante-

riormente, há uma mudança de inclinação na curva do diagrama binário Fe-C que
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Figura 15 - lsopletas de A3 geradas pelas predições da regressão linear para (a) Carbonol (b) Manga-
nêsl(c) Silíciol(d) Cromo;(e) Níquel, a nível zero dos demais elementos



contribui para uma má predição do modelo.

Já para o Manganês, Cromo e Níquel, as predições mantém a mesma inclinação

do esperado, porém com uma diferença que chega a 50 'C. O Silício, por sua vez, não

teve uma boa predição, possivelmente devido ao seu domínio ' fechado que gera um
~t-looP.
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5.3 REDE NEURAL

Após o tratamento do banco, foram obtidos 6845 dados normalizados, que foram
separados entre 5476 para treino e 1 369 de teste. Os parâmetros da rede neural foram
variados para se definir o melhor modelo.

5.3.1 Testes para obtenção do modelo

Avaliando-se o efeito da taxa de aprendizado e do número de neurónios da ca-

mada intermediária no erro quadrático médio, obteve-se os gráficos da Figura 16
abaixo.

Nota-se que, à medida em que a taxa de aprendizado diminui, a variação do
erro quadrático médio diminui para um mesmo número de neurónios. Dessa forma.

determinou-se o valor ideal para a taxa de aprendizado, 0.001 . Em seguida, foi ava-

liado o efeito do número de iterações e do número de neurónios na função perda. A

Figura 1 7 a seguir mostra o comportamento da função perda com o número de itera-
ções para um, seis e doze neurónios.

Pode-se constatar que para poucos neurónios a função perda se estabiliza com

menos iterações, porém a um valor maior. Aumentando-se número de neurónios, as

1 00 iterações se tornam cada vez mais necessárias para se obter um valor adequado
de perda.

Considerando a taxa de aprendizado escolhida, nota-se que o erro quadrático

médio estabiliza a partir de cinco neurónios e que 1 00 iterações são o suficiente para

se obter uma perda adequada. Dessa forma, foi estabelecido que o ponto ótimo seria

de seis neurónios e 1 00 iterações, considerando também o tempo computacional.

Para confirmar se esses parâmetros eram adequados, foram analisados os valo-

res preditos versus esperados variando o número de neurónios. A Figura 1 8 a seguir

mostra esse comportamento para um, seis e doze neurónios, onde os círculos preen-
chidos mostram os dados de treino e os triângulos, os de teste.

Nota-se que as predições para seis e doze neurónios são próximas e, conside-
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rando o tempo computacional, a primeira opção é, de fato, o ponto ótimo

5.3.2 lsopletas da Rede Neural

Definindo todos os parâmetros, as predições do modelo escolhido foram usadas

para plotar isopletas variando um dos elementos e fixando os demais, com o intuito
de se comparar os valores obtidos pelo Thermo-Calca com essas predições. Como

mostram as Figuras 19, 20, 21 , 22 e 23 os elementos variáveis foram plotados nas

composições de nível zero e nível dois, que correspondem às composições mínimas

e intermediárias, respectivamente.

Nota-se que, para a maioria dos casos, os valores preditos (linha cheia) são sa-

tisfatórios em relação ao esperado (pontos em forma de "x")

Para o Carbono, a dificuldade está no ajuste do ponto de inversão da curva, ponto
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mais suscetível a erros, como foi observado na Figura 14 da regressão linear e na

Figura 1 8b da predição da rede neural, na qual possivelmente os dados que destoam

da reta estão próximos a esse ponto. Um conjunto de dados de treino com mais pontos

corretos dessa região poderia contribuir para uma melhor predição.

Para baixas concentrações dos elementos, o modelo para o silício foi destoante,

como mostra a Figura 21 a. Uma possível explicação está no diagrama binário Fe-SI,

da Figura 25, que mostra o campo ' fechado a baixas concentrações de Si. O mesmo

vale para o cromo, que além de ser do grupo de domínio ' fechado, tem um ,y-/oop.
Isso pode ter contribuído para uma má predição do modelo nesses casos.

Apesar de o modelo não ter predito tão bem a influência de alguns elementos em

A3, suas métricas foram consideradas satisfatórias. Para o ponto ótimo discutido an-

teriormente, de taxa de aprendizado 0.001 , seis neurónios na camada intermediária e

1 00 iterações, o erro quadrático médio final foi de 0.0051 e o coeficiente de determi-
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5.4 COMFnRAÇÃO DOS MODELOS

Com o propósito de comparar os modelos de regressão linear com o de rede

neural e Equação de Andrews para predição de A3, foi calculado o Coeficiente de

Determinação de cada um deles, que pode ser visto na Tabela 8 a seguir.

Tabela 8 - Valores de R2 para regressão linear e rede neuras de A3

Modelo

Regressão Linear Hipoeutetóide

Regressão LinearHipereutetóide

Regressão Linear Total

Rede Neural Artificial

Equação de Andrews

R2

0.9607

0.9971

0.8774

0.9734

0.2217

E possível constatar que a regressão linear para os hipereutetóides foi o modelo

com melhor ajuste, seguido pela rede neural e pela regressão linear hipoeutetóide. Já

a regressão linear total teve ajuste menor, pois como discutido anteriormente, o ponto

de inversão da curva não é bem predito. A Equação de Andrews, por sua vez, não
tem um bom ajuste com os dados do Thermo-Calca.

O valor alto de R2 para a rede neural torna menos provável a hipótese de a re-
gressão linear apresentar over#f devido a parâmetros em excesso.
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6 CONCLUSOES

Foi estudada a implementação de dois algoritmos de aprendizado de máquina

para prever temperaturas críticas de transformações de fase em aços comuns de en-

genharia. Para isso, foi criado um banco de dados a partir de simulações termodi-
nâmicas e algoritmos para extração dessas temperaturas críticas. Os dados foram

analisados mediante comparação com equações empíricas e foram tratados antes de
serem usados para o treino.

O modelo de regressão linear mostrou um coeficiente de determinação alto para
a maior parte dos casos estudados, mesmo quando testado por um banco de dados

aleatório. Sua desvantagem foi a necessidade de separação dos dados entre hipo e

hipereutetóide para que o modelo tivesse melhor qualidade de predição.

A rede neural, por sua vez, foi capaz de prever a temperatura A3 sem a neces-

sidade de separação pelo ponto eutetóide, apesar de não conseguir calcular tão bem

as temperaturas próximas a esse ponto de inversão. Seu alto coeficiente de determi-

nação diminui a probabilidade de o modelo de regressão estar com ove/#t causado

por número de parâmetros em excesso. Entretanto, não foi totalmente descartada a

hipótese de ove/#f e para tal deveriam ser estudadas outras métricas e realizar novos

testes com outros bancos de dados. Até então, os valores altos dos coeficientes de

determinação sugerem que os modelos estudados são capazes de descrever bem as
temperaturas críticas.

Por fim, conclui-se que os modelos de aprendizado de máquina utilizando a lin-

guagem f)Whon têm implementação razoavelmente simples e podem ser aplicados a

conjuntos de dados similares, como temperaturas críticas determinadas experimental-
mente



7 SUGESTOES PARA TRABALHOS FUTUROS

Dado o tempo limitado para elaboração do trabalho, certas ideias surgiram ao

longo do processo e não puderam ser executadas. Assim sendo, elas podem ser

utilizadas por outros alunos em trabalhos futuros.

A primeira delas é um estudo com mais profundidade da rede neural. O número

de camadas intermediárias poderia ser estudado para prever com melhor precisão os

valores de A3. O modelo também poderia ser aplicado às outras temperaturas críticas

para avaliar sua predição.

Além disso, uma análise sobre como os modelos se comportam mediante extra-

polação das composições químicas poderia ser relevante. Até mesmo a inserção de

novos parâmetros, como a taxa de aquecimento e outros elementos químicos, como

Fósforo, Enxofre e Molibdênio, que podem influenciar nas temperaturas críticas e não
foram considerados.

Um terceiro prometo está relacionado com a visualização dos resultados do mo-

delo. Poderia ser elaborado um s/fe ou aplicativo, no qual o usuário inserida os pa-

râmetros e esse retornaria os valores das temperaturas críticas, de forma a tornar a
ferramenta mais acessível à comunidade científica.

Por fim, uma última ideia seria o cálculo da porcentagem de carbono no ponto

eutetóide, o que poderia ser feito utilizando os coeficientes da regressão linear de A3

para hipo e hipereutetóides. Sabe-se que esses modelos são de segunda ordem, tal

qual a equação 4. Assim, as equações para A3 são:

A9ip' + >1' 13l'ip'xi + }: >1, 13Ílip'xixj +e

A2iper : l3hiper + >1' 13hiperxi + }l./ >1./ 13hipoxixj + €

k k k

l l
k k k

l l

(15)

(16)

No ponto eutetóide:

Anipo: Aniper::> ARipo - A2iper: 0 (17)

Logo

k k k

i:l i:l j:i

Definindo:

BB'p' - lsB'p'' --E pr:-' - B['''') *: -- E E(B:''' - p:'''') *:*j: o (18)
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l3hipo . l3hiper

D:'-' - P"'-''

(19)

(20)

Substituindo as definições acima na equação 1 8, temos

k

p8': --E BF-*x

k k

li'txixl 0

i:l j:i
Reescrevendo 21 de modo a separar xl (fração de carbono)

k

$out + l31 utxl + >1./ 1si utxi + l31 ltxl 2
i:2

k

}: l3?rtxl xj

k k

+ }: }: l3jÍ'txixj
i=2 j=i

f v.

$?Ytxl 2 + l li7't + >1' B?Ftxl l xl +
\. l-2

k

}8'* --E l3f'*x:
i-2

k k \

-- }l: }ll: l3l?'txixj l
i-2 j-i /

Dividindo todos os termos em 22 por 2lSllt e definindo

l3hipo . l3hiper l PI''p'

. P":p'

Dh'P''

B!"''
ls"'p''

$!"''

cti (23)

B::-' - B"'-.'
(24)

então obtemos

k k \

--EE "'j*'*j l
i=2 j=i /

(25)

A equação 25 pode ser resolvida para xl utilizando a fórmula quadrática

xl (26)

em que a = 1/2 e b e c são

al (27)

k k

+ }, }. c'cij*i*j
i:2 j:i

(28)
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Usando a substituição a 1/2, a equação 26 torna-se

Em suma

l ISÍ''p'

. l3"'p'

:B!"'

Ph'p''

B!"''
P":p''

B!"''
k

b = al + >1: ctljxj
j

xl

Ü

ctij

k k k

ao -'' >1. '"ixi '- }, >1, '"ijxixj
i:2 i:2 j:i

C

b

C

CEC + CECMnMn + czCSiSI + CECCrCr + CECNiNI

clo + CIMnMn + ocSiSI + OcCrCr + cINiNi+

CIMn2 Mn2 + CtMnSI Mn Si + CtMnCr Mn Cr + CXMnNI Mn Ni+

ocsi2 Si2 + CtSiCr Si Cr + clSiNI Si Ni+

OcCr2 Cr2 + CtCrNI Cr Ni+

(30)

(31)

Tabela de correspondênci

Assim, os valores dos coeficientes da regressão linear seriam inseridos nessas
equações para o cálculo da porcentagem de carbono eutetóide.

x.        
xl X2 X3 X4 X5

C Mn si Cr Ni
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ANEXOA Diagramas binários
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Atomic Percent Nickel
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